

TMP01: Low Power, Programmable Temperature Controller (Temperature Sensor)

Product Description

The TMP01 is a temperature sensor which generates a voltage output proportional to absolute temperature and a control signal from one of two outputs when the device is either above or below a specific temperature range. Both the high/low temperature trip points and hysteresis (overshoot) band are determined by user-selected external resistors. For high volume production, these resistors are available on-board.

The TMP01 consists of a bandgap voltage reference combined with a pair of matched comparators. The reference provides both a constant 2.5 V output and a voltage proportional to absolute temperature (VPTAT) which has a precise temperature coefficient of 5 mV/K and is 1.49 V (nominal) at +25°C. The comparators compare VPTAT with the externally set temperature trip points and generate an open-collector output signal when one of their respective thresholds has been exceeded.

Hysteresis is also programmed by the external resistor chain and is determined by the total current drawn out of the 2.5 V reference. This current is mirrored and used to generate a hysteresis offset voltage of the appropriate polarity after a comparator has been tripped. The comparators are connected in parallel, which guarantees that there is no hysteresis overlap and eliminates erratic transitions between adjacent trip zones.

The TMP01 utilizes proprietary thin-film resistors in conjunction with production laser trimming to maintain a temperature accuracy of $\pm 1^{\circ}$ C (typ) over the rated temperature range, with excellent linearity. The open-collector outputs are capable of sinking 20 mA, enabling the TMP01 to drive control relays directly. Operating from a +5 V supply, quiescent current is only 500 μ A (max).

The TMP01 is available in the low cost 8-pin epoxy mini-DIP and SO (small outline) packages, and in die form.

Features

- -55°C to +125°C (-67°F to +257°F) Operation
- ±1.0°C Accuracy Over Temperature (typ)
- Temperature-Proportional Voltage Output
- User Programmable Temperature Trip Points
- User Programmable Hysteresis
- 20 mA Open Collector Trip Point Outputs
- TTL/CMOS Compatible
- Single-Supply Operation (4.5 V to 13.2 V)
- Low Cost 8-Pin DIP and SO Packages

Functional Block Diagram for TMP01

<u>Model</u>	Package	<u>Pins</u>	<u>ROHS</u> Compilant
TMP01FPZ	<u>8 ld PDIP</u>	8	Y <u>Material</u> <u>Declaration</u>
TMP01FSZ	8 ld SOIC	8	Y <u>Material</u> <u>Declaration</u>

Low Power Programmable Temperature Controller

TMP01*

FEATURES

-558C to +1258C (-678F to +2578F) Operation 61.08C Accuracy Over Temperature (typ) Temperature-Proportional Voltage Output User-Programmable Temperature Trip Points User-Programmable Hysteresis 20 mA Open Collector Trip Point Outputs TTL/CMOS Compatible Single-Supply Operation (4.5 V to 13.2 V) Low-Cost 8-Pin DIP and SO Packages

APPLICATIONS

Over/Under Temperature Sensor and Alarm Board Level Temperature Sensing Temperature Controllers Electronic Thermostats Thermal Protection HVAC Systems Industrial Process Control Remote Sensors

FUNCTIONAL BLOCK DIAGRAM

GENERAL DESCRIPTION

The TMP01 is a temperature sensor that generates a voltage output proportional to absolute temperature and a control signal from one of two outputs when the device is either above or below a specific temperature range. Both the high/low temperature trip points and hysteresis (overshoot) band are determined by userselected external resistors. For high volume production, these resistors are available on-board.

The TMP01 consists of a band gap voltage reference combined with a pair of matched comparators. The reference provides both a constant 2.5 V output and a voltage proportional to absolute temperature (VPTAT) which has a precise temperature coefficient of 5 mV/K and is 1.49 V (nominal) at 25°C. The comparators compare VPTAT with the externally set temperature trip points and generate an open-collector output signal when one of their respective thresholds has been exceeded. Hysteresis is also programmed by the external resistor chain and is determined by the total current drawn out of the 2.5 V reference. This current is mirrored and used to generate a hysteresis offset voltage of the appropriate polarity after a comparator has been tripped. The comparators are connected in parallel, which guarantees that there is no hysteresis overlap and eliminates erratic transitions between adjacent trip zones.

The TMP01 utilizes proprietary thin-film resistors in conjunction with production laser trimming to maintain a temperature accuracy of $\pm 1^{\circ}$ C (typical) over the rated temperature range, with excellent linearity. The open-collector outputs are capable of sinking 20 mA, enabling the TMP01 to drive control relays directly. Operating from a 5 V supply, quiescent current is only 500 μ A (max).

The TMP01 is available in low-cost 8-pin epoxy mini-DIP and SO (small outline) packages.

$\label{eq:product} \begin{array}{l} \textbf{TMPO1FP, TMPO1ES/TMPO1FS}_{Packages} (V+=5~V,~GND=0~V,~-40^\circ C \leq T_A \leq +85^\circ C,~unless~otherwise~noted.) \end{array} \\ \end{tabular}$

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
INPUTS SET HIGH, SET LOW Offset Voltage Offset Voltage Drift Input Bias Current, "E" Input Bias Current, "F"	$\begin{array}{c} V_{OS} \\ TCV_{OS} \\ I_B \\ I_B \end{array}$			0.25 3 25 25	50 100	mV μV/°C nA nA
OUTPUT VPTAT ¹ Output Voltage Scale Factor Temperature Accuracy, "E" Temperature Accuracy, "F" Temperature Accuracy, "F" Temperature Accuracy, "F" Temperature Accuracy, "F" Temperature Accuracy, "F" Temperature Accuracy, "F" Repeatability Error ⁴ Long-Term Drift Error ^{2,6} Power Supply Rejection Ratio	VPTAT TC _{VPTAT} ΔVPTAT PSRR	$T_{A} = 25^{\circ}C, \text{ No Load}$ $T_{A} = 25^{\circ}C, \text{ No Load}$ $T_{A} = 25^{\circ}C, \text{ No Load}$ $10^{\circ}C < T_{A} < 40^{\circ}C, \text{ No Load}$ $10^{\circ}C < T_{A} < 40^{\circ}C, \text{ No Load}$ $-40^{\circ}C < T_{A} < 85^{\circ}C, \text{ No Load}$ $-40^{\circ}C < T_{A} < 85^{\circ}C, \text{ No Load}$ $-55^{\circ}C < T_{A} < 125^{\circ}C, \text{ No Load}$ $-55^{\circ}C < T_{A} < 125^{\circ}C, \text{ No Load}$ $T_{A} = 25^{\circ}C, 4.5 \text{ V} \le \text{V} + \le 13.2 \text{ V}$	-1.5 -3 -3.0 -5.0	$1.49 5 \pm 0.5 \pm 1.0 \pm 0.75 \pm 1.5 \pm 1 \pm 2 \pm 1.5 \pm 2.5 0.25 0.25 \pm 0.02$	$1.5 \\ 3$ $3.0 \\ 5.0$ $0.5 \\ \pm 0.1$	V mV/K °C °C °C °C °C °C °C °C Degree Degree %/V
OUTPUT VREF Output Voltage, "E" Output Voltage, "F" Output Voltage, "F" Output Voltage, "F" Output Voltage, "F" Output Voltage, "F" Drift Line Regulation Load Regulation Output Current, Zero Hysteresis Hysteresis Current Scale Factor ¹ Turn-On Settling Time	VREF VREF VREF VREF VREF TC _{VREF} SF _{HYS}	$\begin{array}{l} T_{A} = 25^{\circ}C, \ \text{No Load} \\ T_{A} = 25^{\circ}C, \ \text{No Load} \\ -40^{\circ}C < T_{A} < 85^{\circ}C, \ \text{No Load} \\ -40^{\circ}C < T_{A} < 85^{\circ}C, \ \text{No Load} \\ -55^{\circ}C < T_{A} < 125^{\circ}C, \ \text{No Load} \\ -55^{\circ}C < T_{A} < 125^{\circ}C, \ \text{No Load} \\ -55^{\circ}C < T_{A} < 125^{\circ}C, \ \text{No Load} \\ \end{array}$	2.495 2.490 2.490 2.485	$\begin{array}{c} 2.500\\ 2.500\\ 2.500\\ 2.500\\ 2.5 \pm 0.01\\ 2.5 \pm 0.015\\ -10\\ \pm 0.01\\ \pm 0.1\\ 7\\ 5.0\\ 25 \end{array}$	$2.5052.5102.5102.515\pm 0.05\pm 0.25$	V V V V V ppm/°C %/V %/mA μA/°C μs
OPEN-COLLECTOR OUTPUTS Output Low Voltage Output Leakage Current Fall Time	OVER, UND V _{OL} V _{OL} I _{OH} t _{HL}	ER $I_{SINK} = 1.6 \text{ mA}$ $I_{SINK} = 20 \text{ mA}$ V + = 12 V See Test Load		0.25 0.6 1 40	0.4 100	V V µA ns
POWER SUPPLY Supply Range Supply Current Power Dissipation	V+ I _{SY} I _{SY} P _{DISS}	Unloaded, +V = 5 V Unloaded, +V = 13.2 V +V = 5 V	4.5	400 450 2.0	13.2 500 800 2.5	V μA μA mW

NOTES

 1 K = °C + 273.15.

²Guaranteed but not tested.

³Does not consider errors caused by heating due to dissipation of output load currents. ⁴Maximum deviation between 25°C readings after temperature cycling between –55°C and +125°C.

⁵Typical values indicate performance measured at $T_A = 25^{\circ}C$.

⁶Observed in a group sample over an accelerated life test of 500 hours at 150°C.

Specifications subject to change without notice.

Test Load

TMP01

TMPO1FJ—SPECIFICATIONS TO-99 Metal Can Package (V + = 5 V, GND = 0 V, $-40^{\circ}C \le T_A \le +85^{\circ}C$, unless otherwise noted.)

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
INPUTS SET HIGH, SET LOW Offset Voltage Offset Voltage Drift Input Bias Current, "F"	V _{OS} TCV _{OS} I _B			0.25 3 25	100	mV μV/°C nA
OUTPUT VPTAT ¹ Output Voltage Scale Factor Temperature Accuracy, "F" Repeatability Error ⁴ Long-Term Drift Error ^{2,6}	VPTAT TC _{VPTAT}	$T_A = 25^{\circ}C$, No Load $T_A = 25^{\circ}C$, No Load $10^{\circ}C < T_A < 40^{\circ}C$, No Load $-40^{\circ}C < T_A < 85^{\circ}C$, No Load $-55^{\circ}C < T_A < 125^{\circ}C$, No Load	-3 -5.0	$1.49 \\ 5 \\ \pm 1.0 \\ \pm 1.5 \\ \pm 2 \\ \pm 2.5 \\ 0.25 \\ 0$	3 5.0	V mV/K °C °C °C C Degree Degree
Power Supply Rejection Ratio	PSRR	$T_A = 25^{\circ}C, 4.5 V \le V + \le 13.2 V$		± 0.02	± 0.1	%/V
OUTPUT VREF Output Voltage, "F" Drift Line Regulation Load Regulation Output Current, Zero Hysteresis Hysteresis Current Scale Factor ¹ Turn-On Settling Time	VREF VREF VREF TC _{VREF} I _{VREF} SF _{HYS}	$T_A = 25$ °C, No Load -40°C < $T_A < 85$ °C, No Load -55°C < $T_A < 125$ °C, No Load 4.5 V ≤ V+ ≤ 13.2 V 10 μA ≤ I _{VREF} ≤ 500 μA To Rated Accuracy	2.490 2.480	$2.500 2.500 2.5 \pm 0.015 -10 \pm 0.01 \pm 0.1 7 5.0 25$	2.510 2.520 ± 0.05 ± 0.25	V V ppm/°C %/V %/mA µA µA/°C Us
OPEN-COLLECTOR OUTPUTS O Output Low Voltage Output Leakage Current Fall Time ²	$\begin{array}{c c} \hline \\ \text{OVER, UND} \\ V_{\text{OL}} \\ V_{\text{OL}} \\ I_{\text{OH}} \\ t_{\text{HL}} \end{array}$	ER $I_{SINK} = 1.6 \text{ mA}$ $I_{SINK} = 20 \text{ mA}$ V + = 12 V See Test Load		0.25 0.6 1 40	0.4 100	V V µA ns
POWER SUPPLY Supply Range Supply Current Power Dissipation	$V+ \\ I_{SY} \\ I_{SY} \\ P_{DISS}$	Unloaded, +V = 5 V Unloaded, +V = 13.2 V +V = 5 V	4.5	400 450 2.0	13.2 500 800 2.5	V μA μA mW

NOTES

 ${}^{1}K = {}^{\circ}C + 273.15.$

²Guaranteed but not tested.

³Does not consider errors caused by heating due to dissipation of output load currents.

⁴Maximum deviation between 25°C readings after temperature cycling between -55°C and +125°C. ⁵Typical values indicate performance measured at T_A = 25°C.

⁶Observed in a group sample over an accelerated life test of 500 hours at 150°C.

Specifications subject to change without notice.

TMP01

ABSOLUTE MAXIMUM RATINGS¹

Maximum Supply Voltage
Maximum Input Voltage
(SETHIGH, SETLOW)0.3 V to [(V+) +0.3 V]
Maximum Output Current (VREF, VPTAT) 2 mA
Maximum Output Current (Open-Collector Outputs) 50 mA
Maximum Output Voltage (Open-Collector Outputs) 15 V
Operating Temperature Range55°C to +150°C
Dice Junction Temperature 150°C
Storage Temperature Range – 65°C to +150°C
Lead Temperature (Soldering 60 sec) 300°C
NOTES

¹Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating; functional operation at or above this specification is not implied. Exposure to the above maximum rating conditions for extended periods may affect device reliability.

²Digital inputs and outputs are protected, however, permanent damage may occur on unprotected units from high energy electrostatic fields. Keep units in conductive foam or packaging at all times until ready to use. Use proper antistatic handling procedures.

³Remove power before inserting or removing units from their sockets.

Package Type	θ _{JA}	θ_{JC}	Unit
8-Pin Plastic DIP (P)	103^{1}	43	°C/W
8-Lead TO-99 Can (J)	158 ⁻ 150 ¹	43	°C/W

NOTES

 ${}^{1}\theta_{IA}$ is specified for device in socket (worst-case conditions).

 $^{2}\theta_{IA}$ is specified for device mounted on PCB.

ORDERING GUIDE

Model/Grade	Temperature Range ¹	Package Description	Package Option
TMP01FP	XIND	Plastic DIP	N-8
TMP01ES	XIND	SOIC	SO-8
TMP01FS	XIND	SOIC	SO-8
TMP01FJ ²	XIND	TO-99 Can	H-08A

NOTES

 1 XIND = -40° C to $+85^{\circ}$ C.

²Consult factory for availability of MIL/883 version in TO-99 can.

GENERAL DESCRIPTION

The TMP01 is a linear voltage-output temperature sensor, with a window comparator that can be programmed by the user to activate one of two open-collector outputs when a predetermined temperature setpoint voltage has been exceeded. A low drift voltage reference is available for setpoint programming.

The temperature sensor is basically a very accurate, temperature compensated, band gap-type voltage reference with a buffered output voltage proportional to absolute temperature (VPTAT), accurately trimmed to a scale factor of 5 mV/K. See the Applications Information following.

The low drift 2.5 V reference output VREF is easily divided externally with fixed resistors or potentiometers to accurately establish the programmed heat/cool setpoints, independent of temperature. Alternatively, the setpoint voltages can be supplied by other ground referenced voltage sources such as user-programmed DACs or controllers. The high and low setpoint voltages are compared to the temperature sensor voltage, thus creating a two-temperature thermostat function. In addition, the total output current of the reference (I_{VREF}) determines the magnitude of the temperature hysteresis band. The open collector outputs of the comparators can be used to control a wide variety of devices.

Figure 2. Detailed Block Diagram

OUTLINE DIMENSIONS

Dimensions shown in inches and (mm).

