SKM 500GA128D

SEMITRANS[®] 4

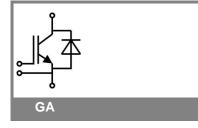
SPT IGBT Modules

SKM 500GA128D

Features

- SPT = Soft-Punch-Through technology
- V_{CEsat} with positive temperature coefficient
- High short circuit capability, self limiting to 6 x I_C

Typical Applications


- AC inverter drives
- UPS
- Electronic welders at f_{sw} up to 20 kHz

Remarks

• $I_{DC} \le 500 \text{ A for } T_{Terminal} = 100 \text{ }^{\circ}\text{C}$

Absolute Maximum Ratings $T_c = 25$ °C, unless otherwise specified					
Symbol	Conditions		Values	Units	
IGBT					
V _{CES}	T _j = 25 °C		1200	V	
I _C	T _j = 150 °C	T _c = 25 °C	700	А	
		T _c = 80 °C	500	А	
I _{CRM}	I _{CRM} =2xI _{Cnom}		800	А	
V _{GES}			± 20	V	
t _{psc}	V_{CC} = 600 V; $V_{GE} \le 20$ V; VCES < 1200 V	T _j = 125 °C	10	μs	
Inverse D	Diode			•	
I _F	T _j = 150 °C	T _{case} = 25 °C	530	A	
		T _{case} = 80 °C	350	Α	
I _{FRM}	I _{FRM} =2xI _{Fnom}		800	А	
I _{FSM}	t _p = 10 ms; sin.	T _j = 150 °C	3600	А	
Module					
I _{t(RMS)}			500	А	
T _{vj}			- 40 + 150	°C	
T _{stg}			- 40 + 125	°C	
V _{isol}	AC, 1 min.		4000	V	
Characteristics T _c = 25 °C, unless otherwise specified					
Symbol	Conditions		min. typ. max	. Units	

Characteristics			25 °C, unless otherwise specified				
Symbol	Conditions		min.	typ.	max.	Units	
IGBT							
V _{GE(th)}	V_{GE} = V_{CE} , I_C = 16 mA		4,5	5,5	6,5	V	
I _{CES}	V_{GE} = 0 V, V_{CE} = V_{CES}	T _j = 25 °C		0,2	0,6	mA	
V _{CE0}		T _i = 25 °C		1	1,15	V	
		T _j = 125 °C		0,9	1,05	V	
r _{CE}	V _{GE} = 15 V	T _j = 25°C		2,3	3	mΩ	
		T _j = 125°C		3	3,8	mΩ	
V _{CE(sat)}	I _{Cnom} = 400 A, V _{GE} = 15 V	T _j = 25°C _{chiplev.}		1,9	2,35	V	
		$T_j = 125^{\circ}C_{chiplev}$		2,1	2,55	V	
C _{ies}				35		nF	
C _{oes}	V_{CE} = 25, V_{GE} = 0 V	f = 1 MHz		4		nF	
C _{res}				4		nF	
Q _G	V _{GE} = -8V+20V			4850		nC	
R _{Gint}	T _j = °C			1		Ω	
t _{d(on)}				130		ns	
t,	$R_{Gon} = 4 \Omega$	$V_{\rm CC}$ = 600V		80		ns	
É _{on}		I _C = 400A		37		mJ	
t _{d(off)}	$R_{Goff} = 4 \Omega$	T _j = 125 °C		880		ns	
t _f		V _{GE} = -15V		80		ns	
E _{off}				48		mJ	
R _{th(j-c)}	per IGBT				0,047	K/W	

SKM 500GA128D

SEMITRANS[®] 4

SPT IGBT Modules

SKM 500GA128D

Characte	ristics					
Symbol	Conditions		min.	typ.	max.	Units
Inverse D	Diode					
$V_F = V_{EC}$	I _{Fnom} = 400 A; V _{GE} = 0 V	T _j = 25 °C _{chiplev.}		2	2,5	V
		T _j = 125 °C _{chiplev.}		1,8		V
V _{F0}		T _j = 25 °C		1,1	1,2	V
r _F		T _j = 25 °C		2,3	3,3	mΩ
I _{RRM}	I _F = 400 A	T _i = 125 °C		430		Α
Q _{rr}	di/dt = 6000 A/µs	,		67		μC
E _{rr}	V_{GE} = -15 V; V_{CC} = 600 V			29		mJ
R _{th(j-c)D}	per diode				0,09	K/W
Module						
L _{CE}				15	20	nH
R _{CC'+EE'}	res., terminal-chip	T _{case} = 25 °C		0,18		mΩ
		T _{case} = 125 °C		0,22		mΩ
R _{th(c-s)}	per module				0,038	K/W
M _s	to heat sink M6		3		5	Nm
M _t	to terminals M6 (M4)		2,5 (1,1)		5 (2)	Nm
w					330	g

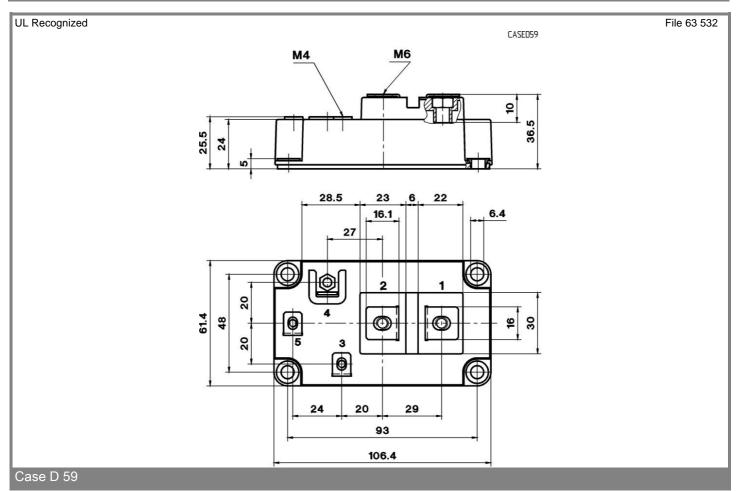
Features

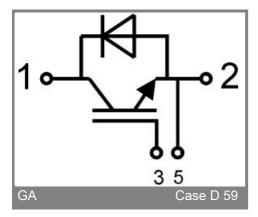
- SPT = Soft-Punch-Through technology
- V_{CEsat} with positive temperature coefficient
- High short circuit capability, self limiting to 6 x I_C

Typical Applications

- AC inverter drives
- UPS
- Electronic welders at f_{sw} up to 20 kHz

Remarks


• $I_{DC} \le 500 \text{ A for } T_{Terminal} = 100 \text{ }^{\circ}\text{C}$


This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.

SKM 500GA128D

