

Applications

- Intermediate Bus Architectures
- Telecommunications
- Data communications
- Distributed Power Architectures
- Servers, workstations

Benefits

- High efficiency no heat sink required
- Reduces total solution board area
- Tape and reel packing
- Compatible with pick & place equipment
- Minimizes part numbers in inventory
- Cost effective

The **Maxw** Products: Y-Series

Features

- RoHS lead-free solder and lead-solder-exempted products are available
- Delivers up to 10 A (36 W)
- No derating up to 85 °C
- Surface-mount package
- Industry-standard footprint and pinout
- Small size and low profile: 1.30" x 0.53" x 0.314" (33.02 x 13.46 x 7.98 mm)
- Weight: 0.22 oz [6.12 g]
- Coplanarity less than 0.003", maximum
- Synchronous Buck Converter topology
- Start-up into pre-biased output
- No minimum load required
- Programmable output voltage via external resistor
- Operating ambient temperature: -40 °C to 85 °C
- Remote output sense
- Remote ON/OFF (Positive or Negative)
- Fixed-frequency operation
- Auto-reset output overcurrent protection
- Auto-reset overtemperature protection
- High reliability, MTBF approx. 32.54 million hours calculated per Telcordia TR-332, Method I Case 1
- All materials meet UL94, V-0 flammability rating
- UL60950 recognition in U.S. & Canada, and DEMKO certification per IEC/EN60950

Description

The YS05S10 non-isolated DC-DC converter delivers up to 10 A of output current in an industry-standard surfacemount package. Operating from a 3.0 - 5.5 V input, the YS05S10 converter is an ideal choice for Intermediate Bus Architectures where Point-of-Load (POL) power delivery is generally a requirement. It provides an extremely tightly-regulated programmable output voltage from 0.7525 V to 3.63 V.

The YS05S10 converter provides exceptional thermal performance, even in high temperature environments with minimal airflow. No derating is required up to 85 °C, even without airflow at natural convection. This performance is accomplished through the use of advanced circuitry, packaging, and processing techniques to achieve a design possessing ultra-high efficiency, excellent thermal management, and a very low-body profile.

The low-body profile and the preclusion of heat sinks minimize impedance to system airflow, thus enhancing cooling for both upstream and downstream devices. The use of 100% automation for assembly, coupled with advanced power electronics and thermal design, results in a product with extremely high reliability.

Electrical Specifications

Conditions: T_A= 25 °C, Airflow = 300 LFM (1.5 m/s), Vin = 5 VDC, Vout = 0.7525 - 3.63 V, unless otherwise specified.

Parameter	Notes	Min	Тур	Max	Units
Absolute Maximum Ratings					
Input Voltage	Continuous	-0.3		6	VDC
Operating Ambient Temperature		-40		85	°C
Storage Temperature		-55		125	°C
Feature Characteristics					
Switching Frequency	Full Temperature Range	250	300	350	kHz
Output Voltage Trim Range ^{1, 4}	By external resistor, See Trim Table 1	0.7525		3.63	VDC
Remote Sense Compensation ¹	Percent of V _{OUT} (NOM)			0.5	VDC
Turn-On Delay Time ²	Full resistive load				
With Vin = (Converter Enabled, then Vin applied)	From Vin = Vin(min) to Vo = 0.1* Vo(nom)	3	3.5	4.5	ms
With Enable (Vin = Vin(nom) applied, then enabled)	From enable to Vo = 0.1*Vo(nom)	3	3.5	4.5	ms
Rise time ²	From 0.1*Vo(nom) to 0.9*Vo(nom)	3	3.5	5	ms
ON/OFF Control (Positive Logic) ³					
Converter Off		-5		0.8	VDC
Converter On		2.4		5.5	VDC
ON/OFF Control (Negative Logic) ³					
Converter Off		2.4		5.5	VDC
Converter On		-5		0.8	VDC

Additional Notes:

The output voltage should not exceed 3.63 V (taking into account both the programming and remote sense compensation).

2 Note that startup time is the sum of turn-on delay time and rise time. The converter is on if ON/OFF pin is left open.

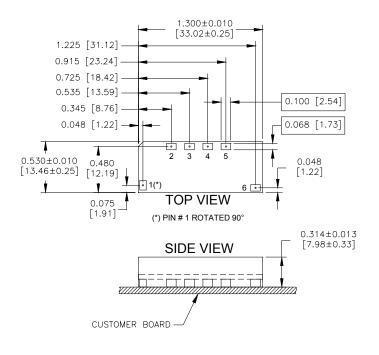
- 3
- 4 Trim resistor connected across the GND (pin 5) and TRIM (pin 3) pins of the converter.
- 5 See waveforms for dynamic response and settling time for different output voltages.

Electrical Specifications (continued)

Conditions: T_A = 25 °C, Airflow = 300 LFM (1.5 m/s), Vin = 5 VDC, Vout = 0.7525 - 3.63 V, unless otherwise specified.

Parameter	Notes	Min	Тур	Max	Units
Input Characteristics					
Operating Input Voltage Range		3.0	5.0	5.5	VDC
Input Undervoltage Lockout					
Turn-on Threshold	Guaranteed by controller	1.95	2.05	2.15	VDC
Turn-off Threshold	Guaranteed by controller	1.73	1.9	2.07	VDC
Maximum Input Current					
V _{IN} = 4.5 VDC, I _{OUT} = 10 A	V _{OUT} = 3.3 VDC			7.9	ADC
V _{IN} = 3.0 VDC, I _{OUT} = 10 A	V _{OUT} = 2.5 VDC			9.1	ADC
V _{IN} = 3.0 VDC, I _{OUT} = 10 A	V _{OUT} = 2.0 VDC			7.3	ADC
V _{IN} = 3.0 VDC, I _{OUT} = 10 A	V _{OUT} = 1.8 VDC			6.7	ADC
V _{IN} = 3.0 VDC, I _{OUT} = 10 A	V _{OUT} = 1.5 VDC			5.7	ADC
V _{IN} = 3.0 VDC, I _{OUT} = 10 A	V _{OUT} = 1.2 VDC			4.7	ADC
V _{IN} = 3.0 VDC, I _{OUT} = 10 A	V _{OUT} = 1.0 VDC			4.0	ADC
V _{IN} = 3.0 VDC, I _{OUT} = 10 A	V _{OUT} = 0.7525 VDC			3.2	ADC
Input Stand-by Current (Converter disabled)	Vin = 5.0 VDC		3.0		mA
Input No Load Current (Converter enabled)	Vin = 5.5 VDC				
	V _{OUT} = 3.3 VDC		80		mA
	V _{OUT} = 2.5 VDC		80		mA
	V _{OUT} = 2.0 VDC		72		mA
	V _{OUT} = 1.8 VDC		68		mA
	V _{OUT} = 1.5 VDC		60		mA
	V _{OUT} = 1.2 VDC		55		mA
	V _{OUT} = 1.0 VDC		50		mA
	V _{OUT} = 0.7525 VDC		42		mA
Input Reflected-Ripple Current - $\dot{t_s}$	See Fig. E for setup (BW = 20 MHz)		10		mA _{P-P}

Electrical Specifications (continued)


Conditions: T_A = 25 °C, Airflow = 300 LFM (1.5 m/s), Vin = 5 VDC, Vout = 0.7525 - 3.63 V, unless otherwise specified.

Parameter	Notes	Min	Тур	Мах	Units
Output Characteristics					
Output Voltage Set Point (no load)		-1.5	Vout	+1.5	%Vout
Output Regulation ⁴					
Over Line	Full resistive load		0.1	0.5	%Vout
Over Load	From no load to full load		0.1	0.5	%Vout
Output Voltage Range (Over all operating input voltage, resistive load and temperature conditions until end of life)		-3		+3	%Vout
Output Ripple and Noise – 20 MHz bandwidth	Over line, load and temperature (Fig. E)				
Peak-to-Peak	V _{OUT} = 3.3 VDC		40	60	mV_{P-P}
Peak-to-Peak	V _{OUT} = 0.7525 VDC		25	35	mV_{P-P}
External Load Capacitance	Plus full load (resistive)				
Min ESR > 1 mΩ				1,000	μF
Min ESR > 10 mΩ				5,000	μF
Output Current Range		0		10	Α
Output Current Limit Inception (IOUT)			18		А
Output Short-Circuit Current (Hiccup mode)	Short = 10 m Ω , continuous		2		Arms
Dynamic Response					
50% Load current change from 5 A -10 A - 5 A with di/dt = 5 A/ μ s ⁵	Co = 100 μF tant. + 1 μF ceramic		150		mV
Settling Time (V_{OUT} < 10% peak deviation) ⁵			60		μs
Efficiency	Full load (10 A)				
	V _{OUT} = 3.3 VDC		94.5		%
	V _{OUT} = 2.5 VDC		93.0		%
	V _{OUT} = 2.0 VDC		92.0		%
	V _{OUT} = 1.8 VDC		91.5		%
	V _{OUT} = 1.5 VDC		89.5		%
	V _{OUT} = 1.2 VDC		87.5		%
	V _{OUT} = 1.0 VDC		86.0		%
	V _{OUT} = 0.7525 VDC		83.0		%

Physical Information

YS05S Pinout (Surface-Mount)

Pad/Pin Connections				
Pad/Pin # Function				
1	ON/OFF			
2	SENSE			
3	TRIM			
4	Vout			
5	GND			
6	Vin			

YS05S Platform Notes

- All dimensions are in inches [mm]
- All differsions are in fiches |
 Connector Material: Copper
- Connector Finish: Gold over Nickel
- Converter Weight: 0.22 oz [6.12 g]
- Converter Weight: 0.22 02 [0.12 g]
 Converter Height: 0.327" Max., 0.301" Min.
- Recommended Surface-Mount Pads:
- Min. 0.080" X 0.112" [2.03 x 2.84]

Converter Part Numbering Scheme

Product Series	Input Voltage	Mounting Scheme	Rated Load Current		Enable Logic	Environmental
YS	05	S	10	-	0	
Y-Series	3.0 – 5.5 V	$S \Rightarrow Surface-$	10 A (0.7525 V to 3.63 V)		$0 \Rightarrow Standard$ (Positive Logic)	No Suffix ⇒ RoHS lead-solder-exempt compliant
	0.0 0.0 V	Mount			D ⇒ Opposite of Standard (Negative Logic)	$G \Rightarrow RoHS$ compliant for all six substances
The example above describes P/N YS05S10-0: 3.0 – 5.5 V input, surface mount, 10 A at 0.7525 V to 3.63 V output, standard						

enable logic, and Eutectic Tin/Lead solder. Please consult factory for the complete list of available options.

NUCLEAR AND MEDICAL APPLICATIONS - Power-One products are not designed, intended for use in, or authorized for use as critical components in life support systems, equipment used in hazardous environments, or nuclear control systems without the express written consent of the respective divisional president of Power-One, Inc.

TECHNICAL REVISIONS - The appearance of products, including safety agency certifications pictured on labels, may change depending on the date manufactured. Specifications are subject to change without notice.

