

- Intermediate Bus Architectures
- Distributed Power Architectures
- Data communications
- Telecommunications
- · Servers, workstations

Benefits

- High efficiency no heat sink required
- Reduces total solution board area
- Tape and reel packing
- Compatible with pick &place equipment
- Minimizes part numbers in inventory
- Low cost

The Maxyz Products: Y-Series

Features

- RoHS lead free and lead-solder-exempted products are available
- Delivers up to 5 A (28 W)
- Extended input range 9.6 V 14 V
- No derating up to 85 °C (70 °C for 5V and 3.3V)
- Surface-mount package
- Industry-standard footprint and pinout
- Small size and low profile: 0.80" x 0.45" x 0.247" (20.32 x 11.43 x 6.27mm)
- Weight: 0.079 oz [2.26 g]
- Co-planarity < 0.003"
- Synchronous Buck Converter topology
- Start-up into pre-biased output
- No minimum load required
- Programmable output voltage via external resistor
- Operating ambient temperature: -40 °C to 85 °C
- Remote ON/OFF
- Fixed frequency operation
- Auto-reset output overcurrent protection
- Auto-reset overtemperature protection
- High reliability, MTBF approx. 71.8 Million Hours calculated per Telcordia TR-332, Method I Case 1
- All materials meet UL94, V-0 flammability rating
- UL 60950 recognition in U.S. & Canada, and DEMKO certification per IEC/EN 60950

Description

The YM12S05 non-isolated dc-dc converters deliver up to 5A of output current in an industry-standard surface-mount package. Operating from a 9.6-14 VDC input, the YM12S05 converters are ideal choices for Intermediate Bus Architectures where Point-of-Load power (POL) delivery is generally a requirement. They provide an extremely tight regulated programmable output voltage of 0.7525 V to 5.5 V.

The Y-Series of converters provide exceptional thermal performance, even in high temperature environments with minimal airflow. No derating is required up to 85 °C (up to 70 °C for 5 V and 3.3 V outputs), even without airflow at natural convection. This is accomplished through the use of advanced circuitry, packaging and processing techniques to achieve a design possessing ultra-high efficiency, excellent thermal management and a very low body profile.

The low body profile and the preclusion of heat sinks minimize impedance to system airflow, thus enhancing cooling for both upstream and downstream devices. The use of 100% automation for assembly, coupled with advanced power electronics and thermal design, results in a product with extremely high reliability.

Electrical Specifications

Conditions: T_A =25°C, Airflow=300 LFM (1.5 m/s), Vin=12Vdc, Vout = 0.7525 - 5.5V, unless otherwise specified.

Parameter	Notes	Min	Тур	Max	Units	
Absolute Maximum Ratings						
Input Voltage	Continuous	-0.3		15	Vdc	
Operating Ambient Temperature		-40		85	°C	
Storage Temperature		-55		125	°C	
Feature Characteristics						
Switching Frequency			310		kHz	
Output Voltage Trim Range ¹	By external resistor, See Trim Table 1	0.7525		5.5	Vdc	
Turn-On Delay Time	Full resistive load					
With Vin = (Converter Enabled, then Vin applied)	From Vin = Vin(min) to Vo=0.1* Vo(nom)		7.5		ms	
With Enable (Vin = Vin(nom) applied, then enabled)	From enable to Vo= 0.1*Vo(nom)		7.5		ms	
Rise time (Full resistive load)	From 0.1*Vo(nom) to 0.9*Vo(nom)		7		ms	
ON/OFF Control ²						
Converter Off		2.4		Vin	Vdc	
Converter On		-5		0.8	Vdc	

Additional Notes:

- The output voltage should not exceed 5.5V.
 The converter is on if the ON/OFF pin is left open.

Electrical Specifications (continued)

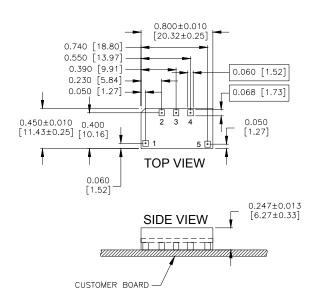
 $Conditions: T_A = 25^{\circ}C, \ Airflow = 300 \ LFM \ (1.5 \ m/s), \ Vin = 12 \ Vdc, \ Vout = 0.7525 - 5.5 \ V, \ unless \ otherwise \ specified.$

Parameter	Notes	Min	Тур	Max	Units
Input Characteristics					
Operating Input Voltage Range		9.6	12	14	Vdc
Input Under Voltage Lockout					
Turn-on Threshold			9.0		Vdc
Turn-off Threshold			8.8		Vdc
Maximum Input Current	5 Adc Out @ 9.6 Vdc In				
	V _{OUT} = 5.0 Vdc			2.9	Adc
	V _{OUT} = 3.3 Vdc			2.0	Adc
	V _{OUT} = 2.5 Vdc			1.6	Adc
	V _{OUT} = 2.0 Vdc			1.4	Adc
	V _{OUT} = 1.8 Vdc			1.25	Adc
	V _{OUT} = 1.5 Vdc			1.0	Adc
	V _{OUT} = 1.2 Vdc			0.8	Adc
	V _{OUT} = 1.0 Vdc			0.7	Adc
Input Stand-by Current (Converter disabled)			1		mA
Input No Load Current (Converter enabled)	V _{OUT} = 5.0 Vdc		65		mA
	V _{OUT} = 3.3 Vdc		47		mA
	V _{OUT} = 2.5 Vdc		35		mA
	V _{OUT} = 2.0 Vdc		28		mA
	V _{OUT} = 1.8 Vdc		25		mA
	V _{OUT} = 1.5 Vdc		20		mA
	V _{OUT} = 1.2 Vdc		17		mA
	V _{OUT} = 1.0 Vdc		15		mA
Input Reflected-Ripple Current - is	See Fig. D for setup. (BW=20MHz)				
	V _{OUT} = 5.0 Vdc		55		mA _{P-P}
	V _{OUT} = 3.3 Vdc		48		mA _{P-P}
	V _{OUT} = 2.5 Vdc		43		mA _{P-P}
	V _{OUT} = 2.0 Vdc		38		mA _{P-P}
	V _{OUT} = 1.8 Vdc		35		mA _{P-P}
	V _{OUT} = 1.5 Vdc		32		mA _{P-P}
	V _{OUT} = 1.2 Vdc		28		mA _{P-P}
	V _{OUT} = 1.0 Vdc		25		mA _{P-P}
Input Voltage Ripple Rejection	120Hz		72		dB

Electrical Specifications (continued)

Conditions: T_A=25°C, Airflow=300 LFM (1.5 m/s), Vin=12Vdc, Vout = 0.7525 - 5.5V, unless otherwise specified.

Parameter	Notes	Min	Тур	Max	Units
Output Characteristics					
Output Voltage Set Point (no load)		-1.5	Vout	+1.5	%Vout
Output Regulation ¹					
Over Line	Full resistive load		1		mV
Over Load	From no load to full load		0.25		%Vout
Output Voltage Range (Over all operating input voltage, resistive load and temperature conditions until end of life)		-2.5		+2.5	%Vout
Output Ripple and Noise - 20MHz bandwidth	Over line, load and temperature (Fig. D)				
Peak-to-Peak	V _{OUT} = 5.0 Vdc		55	70	mV_{P-P}
Peak-to-Peak	V _{OUT} = 0.7525Vdc		40	50	mV_{P-P}
External Load Capacitance	Plus full load (resistive)				
Min ESR > 1mΩ				1,000	μF
Min ESR > 10 mΩ				2,000	μF
Output Current Range		0		5	Α
Output Current Limit Inception (I _{OUT})			10		Α
Output Short- Circuit Current	Short=10 mΩ, continuous		2		Arms
Dynamic Response					
lout step from 2.5A to 5A with di/dt = 5 A/µS	Co = 47 µF ceramic. + 1 µF ceramic		100		mV
Settling Time (V _{OUT} < 10% peak deviation)			20		μs
lout step from 5A to 2.5A with di/dt = -5 A/μS	Co = 47 µF ceramic + 1 µF ceramic		100		mV
Settling Time (V _{OUT} < 10% peak deviation)			20		μs
Efficiency	Full load (5A)				
	V _{OUT} = 5.0 Vdc		92.0		%
	$V_{OUT} = 3.3 \text{ Vdc}$		88.5		%
	V _{OUT} = 2.5 Vdc		86.5		%
	V _{OUT} = 2.0 Vdc		84.5		%
	V _{OUT} = 1.8 Vdc		83.5		%
	V _{OUT} = 1.5 Vdc		81.5		%
	V _{OUT} = 1.2 Vdc		79.0		%
	V _{OUT} = 1.0 Vdc		76.0		%


Additional Notes

1. Trim resistor connected across the GND and TRIM pins of the converter.

Physical Information

YM12S Pinout (Surface Mount)

Pad/Pin Connections			
Pad/Pin #	Function		
1	ON/OFF		
2	Vout		
3	TRIM		
4	GND		
5	Vin		

YM12S Platform Notes

- All dimensions are in inches [mm]
- Connector Material: Copper
- Connector Finish: Gold over Nickel
- Module Weight: 0.079 oz [2.26 g]
- Module Height: 0.260" Max., 0.234" Min.
- Recommended Surface-Mount Pads: Min. 0.080" X 0.112" [2.03 x 2.84]

Converter Part Numbering Scheme

Product Series	Input Voltage	Mounting Scheme	Rated Load Current	RoHS Compatible
YM	12	S	05	O
Y-Series	9.6V – 14V	S ⇒ Surface Mount	5A (0.7525V to 5.5V)	$\begin{array}{c} \text{No Suffix} \ \Rightarrow \text{RoHS} \\ \text{lead-solder-exempt compliant} \\ \\ \text{G} \Rightarrow \text{RoHS Compliant} \end{array}$

The example above describes P/N YM12S05G: 9.6V – 14V input, surface mount, 5A at 0.7525V to 5.5V output, and RoHS compliant. Please consult factory regarding availability of a specific version.

NUCLEAR AND MEDICAL APPLICATIONS - Power-One products are not designed, intended for use in, or authorized for use as critical components in life support systems, equipment used in hazardous environments, or nuclear control systems without the express written consent of the respective divisional president of Power-One, Inc.

TECHNICAL REVISIONS - The appearance of products, including safety agency certifications pictured on labels, may change depending on the date manufactured. Specifications are subject to change without notice.

