

Applications

- Telecommunications
- Data communications
- Wireless communications
- Servers, Workstations

Benefits

- High efficiency no heat sink required
- Higher current capability at 70 °C than most competitors' 40 A half-bricks

Features

- RoHS lead-free solder and lead-solder-exempted products are available
- Delivers up to 40 A
- Outputs available: 3.3, 2.5, 1.8, 1.5, 1.2 and 1.0 V
- Industry-standard quarter-brick pinout
- On-board input differential LC-filter
- Startup into pre-biased load
- No minimum load required
- Dimensions: 1.45" x 2.30" x 0.425" (36.83 x 58.42 x 10.80 mm)
- Weight: 1.2 oz [34.2 g]
- Meets Basic Insulation requirements of EN60950
- Withstands 100 V input transient for 100 ms
- Fixed-frequency operation
- · Fully protected
- Remote output sense
- Non-Latching / Latching OTP option
- Positive or negative logic ON/OFF option
- Output voltage trim range: +10%/-20% with industry-standard trim equations (±10% for 1.2 V and 1.0 V)
- High reliability: MTBF = 13.9 million hours, calculated per Telcordia TR-332, Method I Case 1
- UL60950 recognized in US and Canada and DEMKO certified per IEC/EN60950 (pending)
- Designed to meet Class B conducted emissions per FCC and EN55022 when used with external filter
- All materials meet UL94, V-0 flammability rating

Description

The QME48T40 DC-DC Series of converters provide outstanding thermal performance in high temperature environments. This performance is accomplished through the use of patented/patent-pending circuits, packaging, and processing techniques to achieve ultra-high efficiency, excellent thermal management, and a low-body profile.

The low-body profile and the preclusion of heat sinks minimize impedance to system airflow, thus enhancing cooling for both upstream and downstream devices. The use of 100% automation for assembly, coupled with advanced electronic circuits and thermal design, results in a product with extremely high reliability.

Operating from a 36-75 V input, the QME48T40 converters provide any standard output voltage from 3.3 V down to 1.0 V that can be trimmed from -20% to +10% of the nominal output voltage ($\pm 10\%$ for output voltages 1.2 V and 1.0 V), thus providing outstanding design flexibility.

Electrical Specifications

Conditions: $T_A = 25 \text{ °C}$, Airflow = 300 LFM (1.5 m/s), Vi n = 48 VDC, unless otherwise specified.

Parameter	Notes	Min	Тур	Мах	Units
Absolute Maximum Ratings					
Input Voltage	Continuous	0		80	VDC
Operating Ambient Temperature		-40		85	°C
Storage Temperature		-55		125	°C
Input Characteristics					
Operating Input Voltage Range		36	48	75	VDC
Input Under Voltage Lockout					
Turn-on Threshold		33	34	35	VDC
Turn-off Threshold		31	32	33	VDC
Input Voltage Transient	100 ms			100	VDC
Maximum Input Current	40 ADC Out @ 36 VDC In				
	V _{OUT} = 3.3 VDC			4.1	ADC
	V _{OUT} = 2.5 VDC			3.2	ADC
	V _{OUT} = 1.8 VDC			2.4	ADC
	V _{OUT} = 1.5 VDC			2.0	ADC
	V _{OUT} = 1.2 VDC			1.6	ADC
	V _{OUT} = 1.0 VDC			1.4	ADC
Input Stand-by Current	Vin = 48V, converter disabled		3		mA
Input No Load Current (0 load on the output)	Vin = 48V, converter enabled				
	V _{OUT} = 3.3 VDC		50		mA
	V _{OUT} = 2.5 VDC		47		mA
	V _{OUT} = 1.8 VDC		45		mA
	V _{OUT} = 1.5 VDC		44		mA
	V _{OUT} = 1.2 VDC		43		mA
	V _{OUT} = 1.0 VDC		43		mA
Input Reflected-Ripple Current, is	Vin = 48V, 25 MHz bandwidth				
	V _{OUT} = 3.3 VDC		10		mA _{PK-PI}
	V _{OUT} = 2.5 VDC		9		mA _{PK-PI}
	V _{OUT} = 1.8 VDC		9		mA _{PK-PI}
	V _{OUT} = 1.5 VDC		9		mA _{PK-PK}
	V _{OUT} = 1.2 VDC		8		mA _{PK-P}
	V _{OUT} = 1.0 VDC		8		mA _{PK-PI}
Input Voltage Ripple Rejection	120 Hz		60		dB

Electrical Specifications (continued)

Conditions: $T_A = 25 \text{ °C}$, Airflow = 300 LFM (1.5 m/s), Vin = 48 VDC, unless otherwise specified.

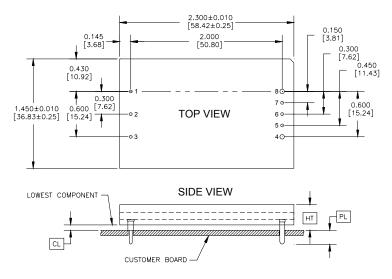
Parameter	Notes	Min	Тур	Max	Units
Output Characteristics					
External Load Capacitance	Plus full load (resistive)			40,000	μF
Output Current Range		0		40	ADC
Current Limit Inception	Non-latching	42	47	52	ADC
Peak Short-Circuit Current	Non-latching, Short = 10 m Ω		50	60	А
RMS Short-Circuit Current	Non-latching		9		Arms
Output Voltage Set Point (no load)	V _{OUT} = 3.3 VDC	3.267	3.300	3.333	VDC
	V _{OUT} = 2.5 VDC	2.475	2.500	2.525	VDC
	V _{OUT} = 1.8 VDC	1.782	1.800	1.818	VDC
	V _{OUT} = 1.5 VDC	1.485	1.500	1.515	VDC
	V _{OUT} = 1.2 VDC	1.188	1.200	1.212	VDC
	V _{OUT} = 1.0 VDC	0.990	1.000	1.010	VDC
Output Regulation Over Line			±2	±5	mV
Output Regulation Over Load			±2	±5	mV
Output Voltage Range	Over line, load and temperature ¹	-1.5		+1.5	%Vout
Output Ripple and Noise – 25 MHz bandwidth	V_{OUT} = 3.3 VDC Full load + 10 µF tantalum + 1 µF ceramic		55	110	mV _{PK-PK}
	V_{OUT} = 1.0 VDC Full load + 10 µF tantalum + 1 µF ceramic		35	70	mV _{PK-PK}
Dynamic Response					
Load Change 50%-75%-50% of lout Max, di/dt = 0.1 A/µs	Co = 1 µF ceramic (Fig. 3.3V.9)		50 ²		mV
di/dt = 5 A/µs	Co = 470 µF POS + 1 µF ceramic		130 ²		mV
Settling Time to 1% of Vout			15 ²		μs
Efficiency					
100% Load	V _{OUT} = 3.3 VDC		91.0		%
	V _{OUT} = 2.5 VDC		89.0		%
	V _{OUT} = 1.8 VDC		86.5		%
	V _{OUT} = 1.5 VDC		84.5		%
	V _{OUT} = 1.2 VDC		82.0		%
	V _{OUT} = 1.0 VDC		80.0		%
50% Load	V _{OUT} = 3.3 VDC		92.0		%
	V _{OUT} = 2.5 VDC		91.0		%
	V _{OUT} = 1.8 VDC		88.5		%
	V _{OUT} = 1.5 VDC		87.0		%
	V _{OUT} = 1.2 VDC		85.0		%
	V _{OUT} = 1.0 VDC		83.0		%

Additional Notes:

¹ Operating ambient temperature range of -40 °C to 85 °C for converter.

² See waveforms for dynamic response and settling time for different output voltages.

 3 Vout can be increased up to 10% via the sense leads or 10% via the trim function. However, the total output voltage trim from all sources should not exceed 10% of V_{OUT}(NOM), in order to ensure specified operation of overvoltage protection circuitry


Electrical Specifications (continued)

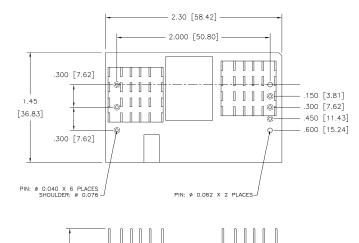
Conditions: $T_A = 25 \text{ °C}$, Airflow = 300 LFM (1.5 m/s), Vin = 48 VDC, unless otherwise specified.

Parameter	Notes	Min	Тур	Max	Units
Isolation Characteristics	· · · ·				
I/O Isolation		2000			VDC
Isolation Capacitance			2		nF
Isolation Resistance		10			MΩ
Feature Characteristics					
Switching Frequency			460		kHz
Output Voltage Trim Range ³	Non-latching (3.3 - 1.5 V)	-20		+10	%
	Non-latching (1.2 V and 1.0 V)	-10		+10	%
Remote Sense Compensation ³	Percent of V _{OUT} (NOM)			+10	%
Output Overvoltage Protection	Non-latching	117	128	140	%
Auto-Restart Period	Applies to all protection features		200		ms
Turn-On Time			4		ms
ON/OFF Control (Positive Logic)					
Converter Off (logic low)		-20		0.8	VDC
Converter On (logic high)		2.4		20	VDC
ON/OFF Control (Negative Logic)					
Converter Off (logic high)		2.4		20	VDC
Converter On (logic low)		-20		0.8	VDC

Physical Information

QME48T Pinout (Through-hole)

Pad/Pin Connections						
Pad/Pin #	Function					
1	Vin (+)					
2	ON/OFF					
3	Vin (-)					
4	Vout (-)					
5	SENSE(-)					
6	TRIM					
7	SENSE(+)					
8	Vout (+)					


QME48T Platform Notes

- All dimensions are in inches [mm]
- Pins 1-3 and 5-7 are Ø 0.040" [1.02] with Ø 0.078" [1.98] shoulder
- Pins 4 and 8 are Ø 0.062" [1.57] without shoulder
- Pin Material & Finish: Brass Alloy 360 with Matte Tin over Nickel
- Converter Weight: 1.2 oz [34.2 g] typical

Height Option	HT (Max. Height)	CL (Min. Clearance)	
G	0.425 [10.80]	0.035 [0.89]	C

Pin	PL Pin Length
Option	±0.005 [±0.13]
А	0.188 [4.78]
В	0.145 [3.68]

Heatsink	HT	CL
Option	(Max. Height)	(Min.
S1	0.99 [25.1]	0.039 [1.00]

Pin Option	PL Pin Length
	±0.005 [±0.13]
В	0.145 [3.68]

Converter Part Numbering Ordering Information

Product Series	Input Voltage	Mounting Scheme	Rated Load Current	Output Voltage		ON/OFF Logic	Max Height [HT]	Pin Length [PL]	Special Feature s	RoHS	Heatsink
QME	48	Т	40	033	-	N	G	В	0		
Quarter- Brick Format	36-75 V	T ⇒ Through- hole	40 ADC	$\begin{array}{c} 010 \Rightarrow 1.0 \lor \\ 012 \Rightarrow 1.2 \lor \\ 015 \Rightarrow 1.5 \lor \\ 018 \Rightarrow 1.8 \lor \\ 025 \Rightarrow 2.5 \lor \\ 033 \Rightarrow 3.3 \lor \end{array}$		N ⇒ Negative P ⇒ Positive	<u>Through</u> <u>hole</u> G ⇒ 0.425"	$\frac{\text{Through}}{\text{hole}}$ $A \Rightarrow$ $0.188^{"}$ $B \Rightarrow$ $0.145^{"}$	$0 \Rightarrow$ STD Non- Latching L \Rightarrow Latching Option	No Suffix ⇒ RoHS lead-solder- exemption compliant G ⇒ RoHS compliant for all six substances	No Suffix \Rightarrow No heatsink -S1 \Rightarrow Heatsink as shown

Example: The example above describes P/N QME48T40033-NGB0: 36-75 V input, through-hole, 40 A @ 3.3 V output, negative ON/OFF logic, a 0.145" solder tail and maximum height of 0.425", standard (non-latching) protection, and Eutectic Tin/Lead solder. Consult factory for the complete list of available options.

Attention: The heatsink option "S1" is only available with the model QME48T40033-NGBOG-S1

Notes:

- 1. NUCLEAR AND MEDICAL APPLICATIONS Power-One products are not designed, intended for use in, or authorized for use as critical components in life support systems, equipment used in hazardous environments, or nuclear control systems without the express written consent of the respective divisional president of Power-One, Inc.
- 2. TECHNICAL REVISIONS The appearance of products, including safety agency certifications pictured on labels, may change depending on the date manufactured. Specifications are subject to change without notice.