The TGHG Series uses state of the art technology to provide highly reliable, non inductive performance. This resistor is ideal for many current monitoring and controls applications.

FEATURES

- Resistance values beginning at $0.5 m\Omega$
- Non Inductive
- Four terminal Kelvin connection
- SOT 227 Package
- Four terminals to isolate measurement path from current flow path
- Accuracy in a high power package

SPECIFICATIONS

Heat Sink: Nickel-plated copper Terminal Nuts: American standard 303 stainless steel

Standard Resistance Values: $0.5 \text{m}\Omega - 1\Omega$, others on request Resistance Tolerances: 1%

Pulse current: up to 500A/0.5sec, depending on ohmic value

Temperature Coefficient: referenced to 25°C, ΔR taken at -15°C and +105°C, <60ppm/°C; <500ppm/°C for resistance range 27mΩ-49mΩ)

Power Rating: 100W at 70°C case temperature; 50Amp permanent (higher on request)

Dielectric strength: 1000VDC, higher value on request

Heat Resistance: Rth <0.56K/W Protection class: acc. to IEC 950/CSA22.2 950/M -89 and EN 60950.88:2

Working Temp. Range: -55°C to +155°C

Max. Torque for Contacts: 1.3Nm 8 (static)

Max Torque for Base Plate:1.5 Nm (static)

STD. PART NUMBERS

Ohms	100 Watt TGHG
0.00050 0.00100 0.00200 0.00500	TGHGCR0005FE TGHGCR0010FE TGHGCR0020FE TGHGCR0050FE
0.01000	TGHGCR0100FE
0.01500 0.02000 0.02500 0.05000 0.0750	TGHGCR0150FE TGHGCR0200FE TGHGCR0250FE TGHGCR0500FE TGHGCR0750FE
0.1000	TGHGCR1000FE

TGHG Series

Precision Current Sense Resistors

DERATING

Best results can be reached by using a thermal transfer compound with a heat conductivity of better than 1W/mK

Subscribe to our New Product Bulletin at ohmite.com