

Maxim > Products > [Power and Battery Management]

MAX8556, MAX8557

4A Ultra-Low-Input-Voltage LDO Regulators

Description

The MAX8556/MAX8557 low-dropout linear regulators operate from input voltages as low as 1.425V and are able to deliver up to 4A of continuous output current with a typical dropout voltage of only 100mV. The output voltage is adjustable from 0.5V to V_{IN} - 0.2V.

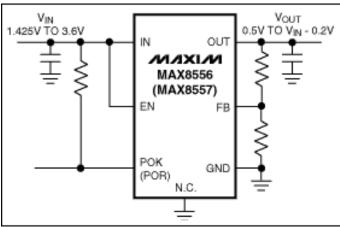
Designed with an internal p-channel MOSFET pass transistor, the MAX8556/MAX8557 maintain a low 800μ A typical supply current, independent of the load current and dropout voltage. Using a p-channel MOSFET eliminates the need for an additional external supply or a noisy internal charge pump. Other features include a logic-controlled shutdown mode, built-in soft-start, short-circuit protection with foldback current limit, and thermal-overload protection. The MAX8556 features a POK output that transitions high when the regulator output is within $\pm 10\%$ of its nominal output voltage. The MAX8557 offers a power-on reset output that transitions high 140ms after the output has achieved 90% of its nominal output voltage.

The MAX8556/MAX8557 are available in a 16-pin thin QFN 5mm x 5mm package with exposed paddle.

Key Features Applications/Uses

- 1.425V to 3.6V Input Voltage Range
- Guaranteed 4A Output Current
- ±1% Output Accuracy Over Load/Line/Temperature
- 100mV Dropout at 4A Load (typ)
- Built-In Soft-Start
- 800µA (typ) Operating Supply Current
- 150µA (max) Shutdown Supply Current
- Short-Circuit Current Foldback Protection
- Thermal-Overload Protection
- ±10% Power-OK (MAX8556)
- 140ms Power-On Reset Output (MAX8557)
- Fast Transient Response
- 16-Pin Thin QFN (5mm x 5mm) Package

Automated Test Equipment (ATE)


Networking
Optical Modules
Point-of-Load Supplies
Servers and Storage Devices
Wireless Base Stations

Key Spec	ifications:	Line	ear Re	gulators											
Part Number	Regulators per Pkg.	Min. V _{IN} (V)	Max. V _{IN} (V)	Min. Adjustable V _{OUT} (V)	Max. Adjustable V _{OUT} (V)	Typ. V _{DROPOUT} @ Rated I _{LOAD} (V)	Rated I _{LOAD} (mA)	Max. I _{CC} (μΑ)	Low Battery/ Power Fail Output	Nominal POK/ Reset Threshold (V)	Watchdog	Reverse Battery Protection	Package	Operating Temp. Range (°C)	
MAX8556 MAX8557	1	1.4	3.6	0.5	3.4	0.1	4,000	1600	No	Vout-10%	No	No	THIN QFN/16	-40 to +85	
						See A	II Linea	r Regu	lators (14	5)					

Notes:

**This pricing is BUDGETARY, for comparing similar parts. Prices are in U.S. dollars and subject to change. Quantity pricing may vary substantially and international prices may differ due to local duties, taxes, fees, and exchange rates. For volume-specific prices and delivery, please see the price and availability page or contact an authorized distributor.

Diagram

Typical Operating Circuit

Evaluation Kits

MAX8556EVKIT

Design Guides

Power Management for Battery-Powered Equipment (PDF)

Reliability Reports

Show FIT data for:

Reliability Report: MAX8556ETE.pdf MAX8557ETE.

pdf

Software/Models

none

Ordering Information

Notes:

- 1. Other options and links for purchasing parts are listed at:
- 2. Didn't Find What You Need? Ask our applications engineers. Expert assistance in finding parts, usually within one business day.
- 3. Part number suffixes: T or T&R = tape and reel; + = RoHS/lead-free; # = RoHS/lead-exempt. More: SeeFull Data Sheet or Part Naming Conventions.
- 4. * Some packages have variations, listed on the drawing. "PkgCode/Variation" tells which variation the product uses. Note that "+", "#", "-" in the part number suffix describes RoHS status. Package drawings may show a different suffix character.

MAX8556	Free Sample	Buy	Package: TYPE PINS FOOTPRINT DRAWING CODE/VAR *	Temp	RoHS/Lead-Free? Materials Analysis
MAX8556ETE			THIN QFN; 16 pin; Dwg: 21-0140 (PDF) Use pkgcode/variation: T1655-2*	-40°C to +85°C	RoHS/Lead-Free: No Materials Analysis
MAX8556ETE-T			THIN QFN; 16 pin; Dwg: 21-0140 (PDF) Use pkgcode/variation: T1655-2*	-40°C to +85°C	RoHS/Lead-Free: No Materials Analysis
MAX8556ETE+			THIN QFN; 16 pin; Dwg: 21-0140 (PDF) Use pkgcode/variation: T1655+2*	-40°C to +85°C	RoHS/Lead-Free: Lead Free Materials Analysis
MAX8556ETE+T			THIN QFN; 16 pin; Dwg: 21-0140 (PDF) Use pkgcode/variation: T1655+2*	-40°C to +85°C	RoHS/Lead-Free: Lead Free Materials Analysis
MAX8557	Free Sample	Buy	Package: TYPE PINS FOOTPRINT DRAWING CODE/VAR *	Temp	RoHS/Lead-Free? Materials Analysis
MAX8557ETE			THIN QFN; 16 pin; Dwg: 21-0140 (PDF) Use pkgcode/variation: T1655-2*	-40°C to +85°C	RoHS/Lead-Free: No Materials Analysis
MAX8557ETE-T			THIN QFN; 16 pin; Dwg: 21-0140 (PDF) Use pkgcode/variation: T1655-2*	-40°C to +85°C	RoHS/Lead-Free: No Materials Analysis
MAX8557ETE+			THIN QFN; 16 pin; Dwg: 21-0140 (PDF) Use pkgcode/variation: T1655+2*	-40°C to +85°C	RoHS/Lead-Free: Lead Free Materials Analysis
MAX8557ETE+T			THIN QFN; 16 pin; Dwg: 21-0140 (PDF) Use pkgcode/variation: T1655+2*	-40°C to +85°C	RoHS/Lead-Free: Lead Free Materials Analysis

More Information

Product Ad: MAX8516

4A Ultra-Low-Input-Voltage **LDO Regulators**

General Description

The MAX8556/MAX8557 low-dropout linear regulators operate from input voltages as low as 1.425V and are able to deliver up to 4A of continuous output current with a typical dropout voltage of only 100mV. The output voltage is adjustable from 0.5V to VIN - 0.2V.

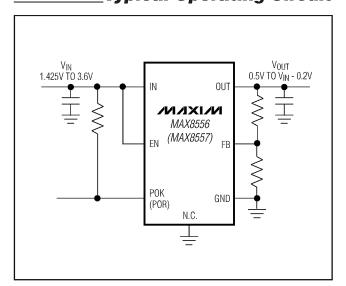
Designed with an internal p-channel MOSFET pass transistor, the MAX8556/MAX8557 maintain a low 800µA typical supply current, independent of the load current and dropout voltage. Using a p-channel MOSFET eliminates the need for an additional external supply or a noisy internal charge pump. Other features include a logic-controlled shutdown mode, built-in soft-start, short-circuit protection with foldback current limit, and thermal-overload protection. The MAX8556 features a POK output that transitions high when the regulator output is within ±10% of its nominal output voltage. The MAX8557 offers a power-on reset output that transitions high 140ms after the output has achieved 90% of its nominal output voltage.

The MAX8556/MAX8557 are available in a 16-pin thin QFN 5mm x 5mm package with exposed paddle.

Applications

Servers and Storage Devices

Networking


Base Stations

Optical Modules

Point-of-Load Supplies

ATE

Typical Operating Circuit

Features

- ♦ 1.425V to 3.6V Input Voltage Range
- ♦ Guaranteed 4A Output Current
- ♦ ±1% Output Accuracy Over Load/Line/ Temperature
- ♦ 100mV Dropout at 4A Load (typ)
- ♦ Built-In Soft-Start
- ♦ 800µA (typ) Operating Supply Current
- ♦ 150µA (max) Shutdown Supply Current
- ♦ Short-Circuit Current Foldback Protection
- ♦ Thermal-Overload Protection
- ♦ ±10% Power-OK (MAX8556)
- ♦ 140ms Power-On Reset Output (MAX8557)
- **♦** Fast Transient Response
- ♦ 16-Pin Thin QFN (5mm x 5mm) Package

Ordering Information

PART	TEMP RANGE	PIN- PACKAGE	FEATURE
MAX8556ETE+	-40°C to +85°C	16 Thin QFN 5mm x 5mm	POK
MAX8557ETE+	-40°C to +85°C	16 Thin QFN 5mm x 5mm	POR

⁺Denotes a lead-free/RoHS-compliant package.

Pin Configuration

4A Ultra-Low-Input-Voltage LDO Regulators

ABSOLUTE MAXIMUM RATINGS

IN, EN, POK, POR to GND0.3V to +4V FB, OUT to GND0.3V to (V _{IN} + 0.3V) Output Short-Circuit Duration	Operating Temperature Range40°C to +85°C Junction Temperature+150°C Storage Temperature Range65°C to +150°C Lead Temperature (soldering, 10s)+300°C
above +70°C) (Note 1)2666.7mW	

Note 1: Maximum power dissipation is obtained using JEDEC JESD51-5 and JESD51-7 standards.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

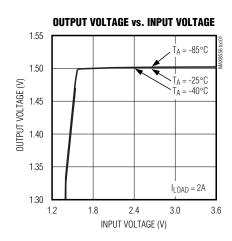
(VEN = VIN = 1.8V, VOUT = 1.5V, IOUT = 2mA, TA = -40°C to +85°C, typical values are at TA = +25°C, unless otherwise noted.) (Note 2)

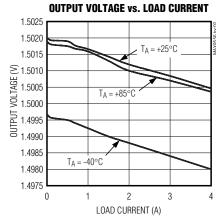
PARAMETER	CONDITIONS				MAX	UNITS
IN	•		•			•
Input Voltage Range			1.425		3.600	V
languat I landon roltonio I colcout	V _{IN} rising, 70mV hysteresis		1.30	1.35	1.40	V
Input Undervoltage Lockout	V _{IN} falling		1.23	1.28	1.33	V
OUT						
Output Voltage Range			0.5		3.4	V
Load Regulation	I _{OUT} = 2mA to 4A			0.1		%/A
Line Regulation	$V_{IN} = 1.425V$ to 3.6V, $V_{OUT} = 1.225V$		-0.15	0	+0.15	%/V
Dropout Voltage	V _{IN} = 1.425V, I _{OUT} = 4A, V _{FB} = 480mV			100	200	mV
Regulated Output-Voltage Current Limit	V _{IN} = 3.6V, V _{OUT} = 3V, V _{FB} = 460mV	5	7	9	А	
Load Capacitance ESR < 50mA					120	μF
FB						
FB Threshold Accuracy (Note 3)	$V_{OUT} = 1.225V \text{ to } 3V, V_{IN} = V_{OUT} + 0.2V$ $I_{OUT} = 2\text{mA to } 4\text{A}$	to 3.6V,	495	500	505	mV
FB Input Bias Current	V _{FB} = 0.5V, V _{IN} = 3.6V			0.001	1	μΑ
GND			•			
OND Consults Comment	V _{IN} = 1.425V to 3.6V, V _{OUT} = 1.225V		800	1600	0	
GND Supply Current	Dropout, V _{IN} = 3.6V, V _{FB} = 480mV		1000	2000	μΑ	
GND Shutdown Current			150	μΑ		
РОК						
FB Power-OK Fault Threshold	FB moving out of regulation,	FB high	540	550	560	mV
TO TOWER-ON FAUIL THESHOLD	$V_{IN} = 1.425V$ to 3.6V, 10mV hysteresis	FB low	440	450	460	
POK Output Voltage, Low	V _{FB} = 0.4V or 0.6V, I _{POK} = 2mA			25	200	mV

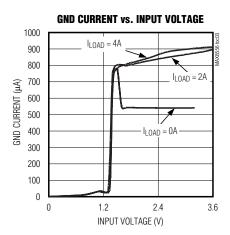
4A Ultra-Low-Input-Voltage LDO Regulators

ELECTRICAL CHARACTERISTICS (continued)

 $(V_{EN} = V_{IN} = 1.8V, V_{OUT} = 1.5V, I_{OUT} = 2mA, T_A = -40^{\circ}C$ to $+85^{\circ}C$, typical values are at $T_A = +25^{\circ}C$, unless otherwise noted.) (Note 2)


PARAMETER	CONDITION	S	MIN	TYP	MAX	UNITS	
POK Output Current, High	V _{POK} = 3.6V V _{FB} = 0.5			0.001	1	μΑ	
POK Delay Time	From FB rising to POK high		25	50	100	μs	
EN							
Enable Input Threehold	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	EN rising			1.25	V	
Enable Input Threshold	$V_{IN} = 1.425V \text{ to } 3.6V$	EN falling	0.4			V	
Enable Input Bias Current	V _{EN} = 0V or 3.6V		-1		+1	μΑ	
THERMAL SHUTDOWN							
The group of Charteleans Three heads	Output on and off	T _J rising		+160		°C	
Thermal-Shutdown Threshold	Output on and off	T _J falling		+115			
POR							
FB Power-On Reset Fault Threshold	FB falling, V _{IN} = 1.425V to 3.6V, 10	OmV hysteresis	440	450	460	mV	
POR Output Voltage, Low	V _{FB} = 0.4V, I _{POR} = 2mA			25	200	mV	
POR Output Current, High	$V_{POR} = 3.6V, V_{FB} = 0.5V$			0.001	1	μΑ	
POR Rising Delay Time	FB rising to POR high impedance	100	140	200	ms		
SOFT-START			•				
Soft-Start Time				100		μs	


Note 2: Specifications to $T_A = -40$ °C are guaranteed by design and not production tested.


Note 3: Minimum supply voltage for output accuracy must be at least 1.425V.

_Typical Operating Characteristics

 $(V_{EN} = V_{IN} = +1.8V, V_{OUT} = +1.5V, I_{OUT} = 4A, C_{OUT} = 20\mu F, C_{IN} = 20\mu F, and T_A = +25^{\circ}C$, unless otherwise noted.)

4A Ultra-Low-Input-Voltage LDO Regulators

Thermal Considerations in PC Board Layout

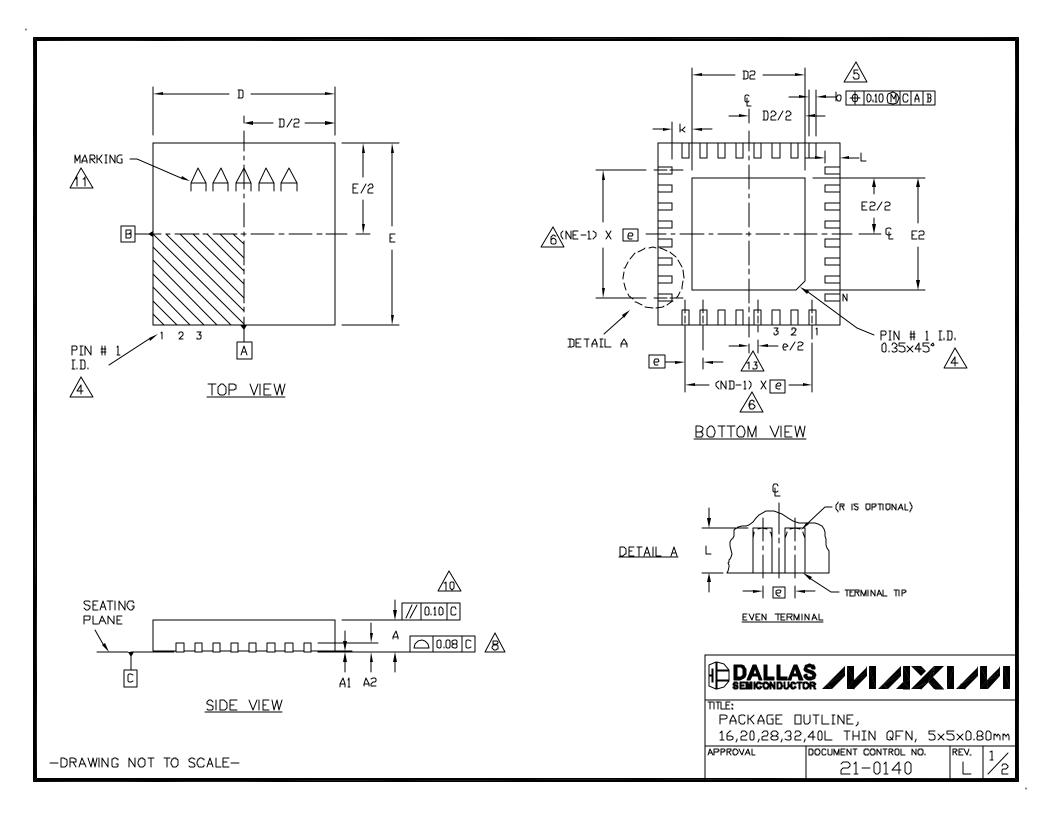
How much power the package can dissipate strongly depends on the mounting method of the IC to the PC board and the copper area for cooling. Using the JEDEC test standard, the maximum power dissipation allowed in the package is 2667mW. This data is obtained with +70°C ambient temperature and +150°C maximum junction temperature. The test board has dimensions of 3in x 3in with four layers of 2oz copper and FR-4 material with 62mil finished thickness. Nine thermal vias are used under the thermal paddle with a diameter of 12mil and 1mil plated copper thickness. Top and bottom layers are used to route the traces. Two middle layers are solid copper and isolated from the nine thermal vias.

More power dissipation can be handled by the package if great attention is given during PC board layout. For example, using the top and bottom copper as a heatsink and connecting the thermal vias to one of the middle layers (GND) transfers the heat from the package into the board more efficiently, resulting in lower junction temperature at high power dissipation in some MAX8556/MAX8557 applications. Furthermore, the solder mask around the IC area on both top and bottom layers can be removed to radiate the heat directly into the air. The maximum allowable power dissipation in the IC is as follows:

$$P_{MAX} = \frac{(T_{J(MAX)} - T_A)}{\theta_{JC} + \theta_{CA}}$$

where TJ(MAX) is the maximum junction temperature (+150°C), TA is the ambient air temperature, $\theta_{\rm JC}$ (1.7°C/W for the 16-pin TQFN) is the thermal resistance from the junction to the case, and $\theta_{\rm CA}$ is the thermal resistance from the case to the surrounding air through the PC board, copper traces, and the package materials. $\theta_{\rm CA}$ is directly related to system level variables and can be modified to increase the maximum power dissipation. The TQFN package has an exposed thermal pad on its underside. This pad provides a low thermal resistance path for heat transfer into the PC board. This low thermally resistive path carries a majority of the heat away from the IC. The PC board is effectively a heatsink for the IC.

The exposed paddle should be connected to a large ground plane for proper thermal and electrical performance. The minimum size of the ground plane is dependent upon many system variables. To create an efficient path, the exposed paddle should be soldered to a thermal landing, which is connected to the ground plane by thermal vias. The thermal landing should be at least as large as the exposed paddle and can be made larger depending on the amount of free space from the exposed paddle to the other pin landings.


A sample layout is available on the MAX8556 evaluation kit to speed designs.

Chip Information

Package Information

TRANSISTOR COUNT: 3137 PROCESS: BICMOS

PACKAGE TYPE	PACKAGE CODE	DOCUMENT NO.
16 TQFN	T1655-2	<u>21-0140</u>

	COMMON DIMENSIONS														
PKG.	16	L 5	×5	21	0L 5	5×5	29	3L 5	5×5	38	2L 5	×5	41	40L 5×5	
SAMBOL	MIN.	N□M.	MAX.	MIN.	N□M.	MAX.	MIN.	N□M.	MAX.	MIN.	N□M.	MAX.	MIN.	N□M.	MAX.
Α	0.70	0.75	0.80	0.70	0.75	0.80	0.70	0.75	0.80	0.70	0.75	0.80	0.70	0.75	0.80
A1	0	0.02	0.05	0	0.02	0.05	0	0.02	0.05	0	0.02	0.05	0	0.02	0.05
A2	0.2	20 RE	F.	0.2	20 RE	F.	0.2	20 RE	F.	0.2	20 RE	F.	0.20 REF.		F.
b	0.25	0.30	0.35	0.25	0.30	0.35	0.20	0.25	0.30	0.20	0.25	0.30	0.15	0.20	0.25
D	4.90	5.00	5.10	4.90	5.00	5.10	4.90	5.00	5.10	4.90	5.00	5.10	4.90	5.00	5.10
E	4,90	5 <u>0</u>	5,10	4,90	5.00	5,10	4.90	5.00	5,10	4.90	5,00	5.10	4.90	5.00	5,10
e	0.	80 BS	SC.	0.	65 B	SC.	0.	50 B	SC.	0.	50 BS	SC.	0.40 BSC.		
k	0.25	-	-	0.25	_	_	0.25	_	_	0.25	-	_	0.25	_	-
L	0.30	0.40	0.50	0.45	0.55	0.65	0.45	0.55	0.65	0.30	0.40	0.50	0.30	0.40	0.50
N		16			20			28			32		40		
ND	4			5			7		8				10		
NE	4		5		7		8			10					
JEDEC	1	√ HHB		١	WHHC		٧.	/HHD-	-1	W	HHD-	2	_		

NOTES:

- 1. DIMENSIONING & TOLERANCING CONFORM TO ASME Y14.5M-1994.
- 2. ALL DIMENSIONS ARE IN MILLIMETERS. ANGLES ARE IN DEGREES.
- 3. N IS THE TOTAL NUMBER OF TERMINALS.
- THE TERMINAL #1 IDENTIFIER AND TERMINAL NUMBERING CONVENTION SHALL CONFORM TO JESD 95-1 SPP-012. DETAILS OF TERMINAL #1 IDENTIFIER ARE OPTIONAL, BUT MUST BE LOCATED WITHIN THE ZONE INDICATED, THE TERMINAL #1 IDENTIFIER MAY BE EITHER A MOLD OR MARKED FEATURE.
- DIMENSION 6 APPLIES TO METALLIZED TERMINAL AND IS MEASURED BETWEEN 0.25 mm AND 0.30 mm FROM TERMINAL TIP.
- \triangle ND AND NE REFER TO THE NUMBER OF TERMINALS ON EACH D AND E SIDE RESPECTIVELY.
- 7. DEPOPULATION IS POSSIBLE IN A SYMMETRICAL FASHION.
- 9. DRAWING CONFORMS TO JEDEC MO220, EXCEPT EXPOSED PAD DIMENSION FOR T2855-3, T2855-6, T4055-1 AND T4055-2.
- ✓ WARPAGE SHALL NOT EXCEED 0.10 mm.
- 11. MARKING IS FOR PACKAGE ORIENTATION REFERENCE ONLY.
- 12. NUMBER OF LEADS SHOWN ARE FOR REFERENCE ONLY.
- △13 LEAD CENTERLINES TO BE AT TRUE POSITION AS DEFINED BY BASIC DIMENSION 'e', ±0.05.
- 14. ALL DIMENSIONS APPLY TO BOTH LEADED AND PHFREE PARTS.

	EXF	POSED	PAD V	VARIATIONS					
PKG.		D2		E2					
CODES	MIN.	N□M.	MAX.	MIN.	N□M.	MAX.			
T1655-2	3.00	3.10	3.20	3.00	3.10	3.20			
T1655-3	3.00	3.10	3.20	3.00	3.10	3.20			
T1655N-1	3.00	3.10	3.20	3.00	3.10	3.20			
T2055-3	3.00	3.10	3.20	3.00	3.10	3.20			
T2055-4	3.00	3.10	3.20	3.00	3.10	3.20			
T2055-5	3.15	3.25	3.35	3.15	3.25	3.35			
T2055MN-5	3.15	3.25	3.35	3.15	3.25	3.35			
T2855-3	3.15	3.25	3.35	3.15	3.25	3.35			
T2855-4	2.60	2.70	2.80	2.60	2,70	2.80			
T2855-5	2.60	2.70	2.80	2.60	2.70	2.80			
T2855-6	3.15	3.25	3.35	3.15	3.25	3.35			
T2855-7	2.60	2.70	2.80	2.60	2.70	2.80			
T2855-8	3.15	3.25	3.35	3.15	3,25	3.35			
T2855N-1	3.15	3.25	3.35	3.15	3.25	3.35			
T3255-3	3.00	3.10	3.20	3.00	3.10	3.20			
T3255-4	3.00	3.10	3.20	3.00	3,10	3.20			
T3255M-4	3.00	3.10	3.20	3.00	3.10	3.20			
T3255-5	3.00	3.10	3,20	3.00	3.10	3.20			
T3255N-1	3.00	3.10	3,20	3.00	3.10	3,20			
T4055-1	3.40	3.50	3.60	3.40	3.50	3.60			
T4055-2	3,40	3,50	3.60	3,40	3.50	3,60			
T4055MN-1	3.40	3.50	3.60	3.40	3.50	3.60			

TITLE:

PACKAGE DUTLINE,

16,20,28,32,40L THIN QFN, 5x5x0.80mm

APPROVAL

DOCUMENT CONTROL NO.

| | |