

ISL8560

Data Sheet

DC/DC Power Switching Regulator

The ISL8560 is a step down DC/DC power switching regulator which accepts 9.0V to 60V input and provides a 2A output current. The output voltage can be set in the range between 1.21V and 55V by means of an external divider. The device uses an internal power DMOS transistor with a typical $r_{DS(ON)}$ of 0.19 Ω to obtain very high efficiency and high switching speed. A switching frequency in the range of 100kHz to 600kHz can be realized (the maximum power dissipation of the various packages must be observed). Notable features of this next generation of DC/DC converter includes pulse-by-pulse current limit for FET protection, hiccup mode for short circuit protection, voltage feedforward regulation, Frequency SYNC, soft-start, low standby current of 60 μ A typical in the disabled state, and thermal shut-down. The device is available in a 20 Ld QFN package.

Ordering Information

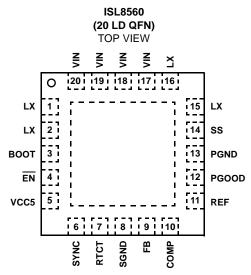
PART NUMBER (Note)	PART MARKING	TEMP. RANGE (°C)	PACKAGE (Pb-Free)	PKG. DWG. #
ISL8560IRZ	ISL 8560IRZ	-40 to +85	20 Ld 6x6 QFN	L20.6x6B
ISL8560IRZ-T*	ISL 8560IRZ	-40 to +85	20 Ld 6x6 QFN	L20.6x6B

*Please refer to TB347 for details on reel specifications.

NOTE: These Intersil Pb-free plastic packaged products employ special Pb-free material sets, molding compounds/die attach materials, and 100% matte tin plate plus anneal (e3 termination finish, which is RoHS compliant and compatible with both SnPb and Pb-free soldering operations). Intersil Pb-free products are MSL classified at Pb-free peak reflow temperatures that meet or exceed the Pb-free requirements of IPC/JEDEC J STD-020.

Features

- Voltage feedforward mode
- Step down DC/DC supporting up to 2A
- Input voltage range of 9.0V to 60V
- Internal reference of 1.21V ±1%
- Adjustable output voltage range of 1.21V to 55V
- Adjustable switching frequency 100kHz to 600kHz
- Frequency SYNC pin
- Zero load current operation
- Pulse-by-pulse mode current limit and Hiccup mode
- Low standby current of 60µA typical
- Thermal shut-down
- Load dump to 100V for 400ms
- Pb-Free (RoHS compliant)


Applications

- · Industrial and automotive power supplies
- Portable computers
- Battery chargers
- Distributed power systems

Related Literature

 Technical Brief TB363 "Guidelines for Handling and Processing Moisture Sensitive Surface Mount Devices (SMDs)"

Pinout

Absolute Maximum Ratings

Input Voltage VINGND - 0.3V to 72V
Voltage at BOOT pinGND - 0.3V to 82V
LX, RTCTGND - 0.3V to 60V
REF, FB, SS, EN, SYNC, PGOOD pins
VCC5* GND - 0.3V to 5.5V

Recommended Operating Conditions

Thermal Information

Thermal Resistance (Typical, Notes 1, 2)	θ _{JA} (°C/W)	θ_{JC} (°C/W)
QFN Package	30	1.5
Maximum Power Dissipation		3W
Maximum Junction Temperature (Hermetic	Package or D	Die) +150°C
Maximum Junction Temperature (Plastic F	Package)	+150°C
Maximum Storage Temperature Range	65	5°C to +150°C
Pb-Free Reflow Profile		see link below

CAUTION: Do not operate at or near the maximum ratings listed for extended periods of time. Exposure to such conditions may adversely impact product reliability and result in failures not covered by warranty.

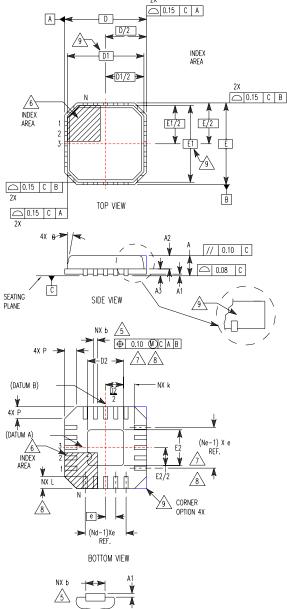
*An accidental short between VCC5 and GND may cause excessive heating and permanent damage to the device.

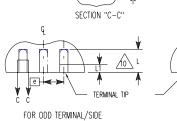
NOTES:

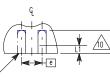
- 1. θ_{JA} is measured in free air with the component mounted on a high effective thermal conductivity test board with "direct attach" features. See Tech Brief TB379.
- 2. For θ_{JC} , the "case temp" location is the center of the exposed metal pad on the package underside.
- 3. Additional heatsinking may be required to insure that the junction temperature does not exceed above +125°C.

Electrical Specifications

Unless otherwise specified the specifications listed in the table are tested at $T_A = +25^{\circ}C$ and guard band for the full Temperature Range, $V_{IN} = 48V$, $V_{OUT} = 5.0V$, $I_{OUT} = 0A$. Typical values are at $T_A = +25^{\circ}C$. Parameters with MIN and/or MAX limits are 100% tested at +25°C, unless otherwise specified. Temperature limits established by characterization and are not production tested.


PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNITS
VIN SUPPLY		1			4	
Input Voltage Range			9.0	24	60	V
VIN SUPPLY CURRENT			I	ł	4	
Shut-down Current	IDD	V _{IN} = 9V, EN = HIGH		35	60	μA
		V _{IN} = 60V, EN = HIGH		60	110	μA
Operating Current	IDD	V _{IN} = 9V, V _{FB} = 1.5V		3.6	4	mA
		V _{IN} = 60V, V _{FB} = 1.5V		6.0	8.0	mA
VCC5 SUPPLY (A 1µF capacitor is ne	eded from VCC	5 to GND)	I			
VCC5 Output Voltage		V_{IN} = 9.0V to 60V, I _L = 0mA to 5mA	4.9	5.0	5.1	V
Maximum Output Current		V _{IN} = 24V			5	mA
INPUT UV						
Rising UV Threshold			7.8		8.9	V
UV Threshold Hysteresis			0.18	0.3	0.55	V
BUCK CONVERTER						
Output Voltage (Note 3)		I _{OUT} = 2A	1.2		V _{IN} - 5	V
Maximum Duty Cycle		F = 300kHz	90	96		%
Minimum Controllable ON Time		F = 300kHz		150		ns
OSCILLATOR			I			
Total Variation on Set Frequency		Over the V _{IN} range with frequency set by external resistor and capacitor at RTCT		±10		%
Frequency Range (Set by RTCT)	fosc		100		600	kHz
SYNC Range	fosc		100		600	kHz
Tested Oscillation Frequency	fosc	V_{IN} = 9V to 60V, R_T = 100k Ω , C_T = 1200pF		60		kHz
		$V_{IN} = 9V$ to 60V, $R_T = 27.4k\Omega$, $C_T = 220pF$		725		kHz


Electrical Specifications


Unless otherwise specified the specifications listed in the table are tested at $T_A = +25^{\circ}C$ and guard band for the full Temperature Range, $V_{IN} = 48V$, $V_{OUT} = 5.0V$, $I_{OUT} = 0A$. Typical values are at $T_A = +25^{\circ}C$. Parameters with MIN and/or MAX limits are 100% tested at +25°C, unless otherwise specified. Temperature limits established by characterization and are not production tested. **(Continued)**

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	ТҮР	MAX	UNITS
Max Ramp Amplitude	∆V _{OSC}	V _{IN} = 9V		1		VP
Modulator Gain	V _{VIN} /ΔV _{OSC}			9		-
Min OFF Time				150	300	ns
REFERENCE AND SOFT-START		1		1		-!
Internal Reference Voltage	V _{REF}			1.21		V
Soft-Start Current	I _{SS}		8	10	12	μA
Soft-Start Threshold	V _{SOFT}		0.8			V
ERROR AMPLIFIER		-		1		-
Transconductance	9 _m		3.9	5.7	7.2	mS
Gain-Bandwidth Product	GBW			15		MHz
Slew Rate	SR			6		V/µs
COMP Pin Drive	ICOMP			±200		μA
Internal Feedback Voltage	V _{FB}	$T_A = -40^{\circ}C$ to +85°C, $V_{IN} = 9.0V$ to 60V	1.194	1.210	1.222	V
Internal Feedback Bias Current	I _{FB}	$T_A = -40^{\circ}C$ to +85°C, $V_{FB} = 1.20V$		±50	±100	nA
OVERCURRENT PROTECTION	1			1		1
Dynamic Current Limit ON Time	tocon			16		Clock pulses
Dynamic Current Limit OFF Time	tOCOFF			4		SS cycle
Switch Current Limit	ILIMIT	T _A = +25°C	3.2	4.0	4.8	А
POWER-GOOD (OPEN DRAIN)		-		1		-
Power-Good Lower Threshold	V _{PG-}	Fraction of the V_{OUT} set point; ~3µs noise filter	85		89	%
	V _{PG+}	Fraction of the V_{OUT} set point; ~3µs noise filter	111		115	%
PGOOD Leakage Current	I _{PGLKG}	V _{PULLUP} = 5.5V			1	μA
PGOOD Voltage Low		I _{PGOOD} = 4mA			0.5	V
MOSFET		-		1		-
Switch ON-Resistance	^r DS(ON)	I_{OUT} = 2A, V_{BOOT} = V_{IN} + 5.0V, Tested at wafer level		0.19	0.355	Ω
EN						
Input HIGH Level (Asserted)	VINHIGH		2.6			V
Input LOW Level (Unasserted)	VINLOW				1.2	V
Input Current HIGH	IENHIGH	$V_{IN} = 24V$			25	μA
Input Current LOW	IENLOW	$V_{IN} = 24V$			25	μA
SYNC						
Input HIGH Level (Asserted)	VINHIGH		2.6			V
Input LOW Level (Unasserted)	VINLOW				1.2	V
Input Current HIGH	ISYNCHIGH				0.2	μA
Input Current LOW	ISYNCLOW				0.2	μA
THERMAL SHUT-DOWN	I			1	1	1
Thermal Shut-down Temperature		Rising Threshold		150		°C
Thermal Shut-down Hysteresis				15		°C

Quad Flat No-Lead Plastic Package (QFN) Micro Lead Frame Plastic Package (MLFP)

FOR EVEN TERMINAL/SIDE

L20.6x6B

20 LEAD QUAD FLAT NO-LEAD PLASTIC PACKAGE (COMPLIANT TO JEDEC MO-220VJJB ISSUE C)

	MILLIMETERS			
SYMBOL	MIN	NOMINAL	MAX	NOTES
А	0.80	0.90	1.00	-
A1	-	-	0.05	-
A2	-	-	1.00	9
A3		0.20 REF		9
b	0.28	0.33	0.38	5, 8
D		6.00 BSC		-
D1		5.75 BSC		9
D2	3.33	3.43	3.53	7, 8
Е		6.00 BSC		
E1		5.75 BSC		9
E2	3.33	3.43	3.53	7, 8
е		0.80 BSC		-
k	0.635	-	-	-
L	0.50	0.60	0.70	8
L1	-	-	0.15	10
Ν	20			2
Nd	5			3
Ne	5		3	
Р	-	-	0.60	9
θ	-	-	12	9
			F	Rev. 0 12/0

NOTES:

- 1. Dimensioning and tolerancing conform to ASME Y14.5-1994.
- 2. N is the number of terminals.
- 3. Nd and Ne refer to the number of terminals on each D and E.
- 4. All dimensions are in millimeters. Angles are in degrees.
- 5. Dimension b applies to the metallized terminal and is measured between 0.15mm and 0.30mm from the terminal tip.
- 6. The configuration of the pin #1 identifier is optional, but must be located within the zone indicated. The pin #1 identifier may be either a mold or mark feature.
- 7. Dimensions D2 and E2 are for the exposed pads which provide improved electrical and thermal performance.
- Nominal dimensions are provided to assist with PCB Land Pattern Design efforts, see Intersil Technical Brief TB389.
- 9. Features and dimensions A2, A3, D1, E1, P & 0 are present when Anvil singulation method is used and not present for saw singulation.
- Depending on the method of lead termination at the edge of the package, a maximum 0.15mm pull back (L1) maybe present. L minus L1 to be equal to or greater than 0.3mm.