

High Common-Mode Voltage, Programmable Gain Difference Amplifier

AD628

FEATURES

High common-mode input voltage range $\pm 120 V$ at V_S = $\pm 15 V$ Gain range 0.1 to 100 Operating temperature range: -40° C to $+85^{\circ}$ C Supply voltage range Dual supply: $\pm 2.25 V$ to $\pm 18 V$ Single supply: $\pm 2.25 V$ to 36 VExcellent ac and dc performance Offset temperature stability RTI: $10 \mu V/^{\circ}$ C maximum Offset: $\pm 1.5 V$ mV maximum CMRR RTI: 75 dB minimum, dc to 500 Hz, G = ± 1

APPLICATIONS

High voltage current shunt sensing Programmable logic controllers Analog input front end signal conditioning +5 V, +10 V, ±5 V, ±10 V, and 4 to 20 mA Isolation Sensor signal conditioning Power supply monitoring Electrohydraulic controls Motor controls

GENERAL DESCRIPTION

The AD628 is a precision difference amplifier that combines excellent dc performance with high common-mode rejection over a wide range of frequencies. When used to scale high voltages, it allows simple conversion of standard control voltages or currents for use with single-supply ADCs. A wideband feedback loop minimizes distortion effects due to capacitor charging of Σ - Δ ADCs.

A reference pin (V_{REF}) provides a dc offset for converting bipolar to single-sided signals. The AD628 converts +5 V, +10 V, \pm 5 V, \pm 10 V, and 4 to 20 mA input signals to a single-ended output within the input range of single-supply ADCs.

The AD628 has an input common mode and differential mode operating range of ± 120 V. The high common mode, input impedance makes the device well suited for high voltage measurements across a shunt resistor. The inverting input of the buffer amplifier is available for making a remote Kelvin connection.

Rev. G Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

FREQUENCY (Hz)
Figure 2. CMRR vs. Frequency of the AD628

A precision 10 k Ω resistor connected to an external pin is provided for either a low-pass filter or to attenuate large differential input signals. A single capacitor implements a lowpass filter. The AD628 operates from single and dual supplies and is available in an 8-lead SOIC_N or an 8-lead MSOP. It operates over the standard industrial temperature range of -40° C to +85°C.

SPECIFICATIONS

 $T_A = 25^{\circ}C$, $V_S = \pm 15$ V, $R_L = 2$ k Ω , $R_{EXT1} = 10$ k Ω , $R_{EXT2} = \infty$, $V_{REF} = 0$ V, unless otherwise noted.

Table 1.

		AD628AR		AD628ARM				
Parameter	Conditions	Min	Тур	Max	Min	Тур	Max	Unit
DIFFERENTIAL AND OUTPUT AMPLIFIER								
Gain Equation	$G = +0.1 (1 + R_{EXT1}/R_{EXT2})$							V/V
Gain Range	See Figure 29	0.1 ¹		100	0.1 ¹		100	V/V
Offset Voltage	$V_{CM} = 0 V$; RTI of input pins ² ; output amplifier G = +1	-1.5		+1.5	-1.5		+1.5	mV
vs. Temperature			4	8		4	8	μV/°C
CMRR ³	RTI of input pins; G = +0.1 to $+100$	75			75			dB
	500 Hz	75			75			dB
Minimum CMRR Over Temperature	–40°C to +85°C	70			70			dB
vs. Temperature			1	4		1	4	(µV/V)/°C
PSRR (RTI)	$V_s = \pm 10 V$ to $\pm 18 V$	77	94		77	94		dB
Input Voltage Range								
Common Mode		-120		+120	-120		+120	V
Differential		-120		+120	-120		+120	V
Dynamic Response								
Small Signal Bandwidth –3 dB	G = +0.1		600			600		kHz
Full Power Bandwidth			5			5		kHz
Settling Time	G = +0.1, to 0.01%, 100 V step			40			40	μs
Slew Rate			0.3			0.3		V/µs
Noise (RTI)								
Spectral Density	1 kHz		300			300		nV/√Hz
	0.1 Hz to 10 Hz		15			15		μV р-р
DIFFERENTIAL AMPLIFIER								
Gain			0.1			0.1		V/V
Error		-0.1	+0.01	+0.1	-0.1	+0.01	+0.1	%
vs. Temperature				5			5	ppm/°C
Nonlinearity				5			5	ppm
vs. Temperature			3	10		3	10	ppm
Offset Voltage	RTI of input pins	-1.5		+1.5	-1.5		+1.5	mV
vs. Temperature				8			8	μV/°C
Input Impedance								
Differential			220			220		kΩ
Common Mode			55			55		kΩ
CMRR ^₄	RTI of input pins; G = +0.1 to $+100$	75			75			dB
	500 Hz	75			75			dB
Minimum CMRR Over Temperature	–40°C to +85°C	70			70			dB
vs. Temperature			1	4		1	4	(µV/V)/°C
Output Resistance			10			10		kΩ
Error		-0.1		+0.1	-0.1		+0.1	%

AD628

		AD628AR		AD628ARM				
Parameter	Conditions	Min	Тур	Max	Min	Тур	Max	Unit
OUTPUT AMPLIFIER								
Gain Equation	$G = (1 + R_{EXT1}/R_{EXT2})$							V/V
Nonlinearity	$G = +1, V_{OUT} = \pm 10 V$			0.5			0.5	ppm
Offset Voltage	RTI of output amp	-0.15		+0.15	-0.15		+0.15	mV
vs. Temperature				0.6			0.6	μV/°C
Output Voltage Swing	$R_L = 10 \ k\Omega$	-14.2		+14.1	-14.2		+14.1	V
	$R_L = 2 \ k\Omega$	-13.8		+13.6	-13.8		+13.6	V
Bias Current			1.5	3		1.5	3	nA
Offset Current			0.2	0.5		0.2	0.5	nA
CMRR	$V_{CM} = \pm 13 \text{ V}$	130			130			dB
Open-Loop Gain	$V_{OUT} = \pm 13 V$	130			130			dB
POWER SUPPLY								
Operating Range		±2.25		±18	±2.25		±18	V
Quiescent Current				1.6			1.6	mA
TEMPERATURE RANGE		-40		+85	-40		+85	°C

¹ To use a lower gain, see the Gain Adjustment section. ² The addition of the difference amplifier and output amplifier offset voltage does not exceed this specification. ³ Error due to common mode as seen at the output: $V_{OUT} = \left[\frac{(0.1)(V_{CM})}{\frac{75}{10^{\frac{75}{20}}}}\right] \times [Output Amplifier Gain]$. ⁴ Error due to common mode as seen at the output of A1: $V_{OUT} AI = \left[\frac{(0.1)(V_{CM})}{\frac{75}{10^{\frac{75}{20}}}}\right]$.

 $T_A = 25^{\circ}C$, $V_S = 5$ V, $R_L = 2$ k Ω , $R_{EXT1} = 10$ k Ω , $R_{EXT2} = \infty$, $V_{REF} = 2.5$ V, unless otherwise noted.

Table 2.

		AD628AR		AD628ARM				
Parameter	Conditions	Min	Тур	Max	Min	Тур	Max	Unit
DIFFERENTIAL AND OUTPUT AMPLIFIER								
Gain Equation	$G = +0.1(1 + R_{EXT1}/R_{EXT2})$							V/V
Gain Range	See Figure 29	0.1 ¹		100	0.1 ¹		100	V/V
Offset Voltage	$V_{CM} = 2.25 \text{ V}; \text{ RTI of input pins}^2;$	-3.0		+3.0	-3.0		+3.0	mV
	output amplifier $G = +1$							
vs. Temperature			6	15		6	15	μV/°C
CMRR ³	RTI of input pins; $G = +0.1$ to $+100$	75			75			dB
	500 Hz	75			75			dB
Minimum CMRR Over Temperature	-40°C to +85°C	70			70			dB
vs. Temperature			1	4		1	4	(µV/V)/°C
PSRR (RTI)	$V_{s} = 4.5 V$ to 10 V	77	94		77	94		dB
Input Voltage Range								
Common Mode ⁴		-12		+17	-12		+17	V
Differential		-15		+15	-15		+15	V
Dynamic Response								
Small Signal Bandwidth – 3 dB	G = +0.1		440			440		kHz
Full Power Bandwidth			30			30		kHz
Settling Time	G = +0.1; to 0.01%, 30 V step		15			15		μs
Slew Rate			0.3			0.3		V/us
Noise (RTI)								
Spectral Density	1 kHz		350			350		nV/√Hz
	0.1 Hz to 10 Hz		15			15		uV p-p
DIFFERENTIAL AMPLIFIER								P. P. P
Gain			0.1			0.1		V/V
Error		-0.1	+0.01	+0.1	-0.1	+0.01	+0.1	%
Nonlinearity				3	••••		3	ppm
vs Temperature			3	10		3	10	nnm
Offset Voltage	BTL of input pins	-25	5	+2 5	-25	5	+25	mV
vs Temperature		2.5		10	2.5		10	шV/°С
				10			10	μν/ C
Differential			220			220		kO
Common Mode			55			55		kO
CMRR ⁵	BTL of input pipe: $G = \pm 0.1$ to ± 100	75	55		75	55		dB
CMIN	500 Hz	75			75			dB
Minimum CMBB Over Temperature	-40° C to $\pm 85^{\circ}$ C	70			70			dB
vs Temperature	+0 C to +05 C	/0	1	4	70	1	4	(uV/V)/°C
Output Posistanco			10	7		10	7	(μν/ν)/ C
Fror		_0 1	10	+0.1	-0.1	10	+0.1	06
		-0.1		+0.1	-0.1		+0.1	70
Gain Equation	$G = (1 + P_{max}/P_{max})$							MM
Nonlinearity	G = (1 + Rext)/Rext)			0.5			0.5	v/ v
	G = +1, voor = 1, v to 4, v	0.15		0.5	0.15		0.5	ppin m\/
output offset voltage	Kirol output amplifier	-0.13		+0.15	-0.15		+0.15	
Output Voltago Swing	P = 10 kO	0.0		0.0	0.0		0.0	μν/ C
Output voltage Swing	$R_L = 10 \text{ km}^2$	0.9		4.1	0.9		4.1	V
Piac Current	$n_{\rm L} = 2 \ \text{KL}_2$	'	1 5	4 2	1	1 5	4 2	v ~^
Blas Current			1.5	5		1.5	5	nA A
Offset Current		120	0.2	0.5	120	0.2	0.5	nA
	$v_{CM} = I V to 4 V$	130			130			an
Open-Loop Gain	$v_{OUT} = 1 V to 4 V$	130			130			dВ

AD628

		AD628AR		AD628ARM				
Parameter	Conditions	Min	Тур	Max	Min	Тур	Max	Unit
POWER SUPPLY								
Operating Range		±2.25		+36	±2.25		+36	V
Quiescent Current				1.6			1.6	mA
TEMPERATURE RANGE		-40		+85	-40		+85	°C

¹ To use a lower gain, see the Gain Adjustment section. ² The addition of the difference amplifier and output amplifier offset voltage does not exceed this specification.

³ Error due to common mode as seen at the output: $V_{OUT} = \begin{bmatrix} (0.1)(V_{CM}) \\ \frac{75}{10^{\frac{75}{20}}} \end{bmatrix} \times [Output Amplifier Gain].$

 4 Greater values of voltage are possible with greater or lesser values of V_{REF}.

⁵ Error due to common mode as seen at the output of A1: $V_{OUT} AI = \left[\frac{(0.1)(V_{CM})}{\frac{75}{10^{\frac{75}{20}}}}\right].$

ABSOLUTE MAXIMUM RATINGS

Table 3.

Parameter	Rating		
Supply Voltage	±18 V		
Internal Power Dissipation	See Figure 3		
Input Voltage (Common Mode)	±120 V ¹		
Differential Input Voltage	±120 V ¹		
Output Short-Circuit Duration	Indefinite		
Storage Temperature Range	–65°C to +125°C		
Operating Temperature Range	–40°C to +85°C		
Lead Temperature (Soldering, 10 sec)	300°C		

 $^{\rm 1}$ When using ±12 V supplies or higher, see the Input Voltage Range section.

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

THERMAL CHARACTERISTICS

Figure 3. Maximum Power Dissipation vs. Temperature

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

AD628

OUTLINE DIMENSIONS

Figure 37. 8-Lead Standard Small Outline Package [SOIC_N] Narrow Body (R-8) Dimensions shown in millimeters and (inches)

ORDERING GUIDE

Model	Temperature Range	Description	Package Option	Branding
AD628AR	-40°C to +85°C	8-Lead SOIC_N	R-8	
AD628AR-REEL	-40°C to +85°C	8-Lead SOIC_N 13" Reel	R-8	
AD628AR-REEL7	-40°C to +85°C	8-Lead SOIC_N 7" Reel	R-8	
AD628ARZ ¹	-40°C to +85°C	8-Lead SOIC_N	R-8	
AD628ARZ-RL ¹	-40°C to +85°C	8-Lead SOIC_N 13" Reel	R-8	
AD628ARZ-R7 ¹	-40°C to +85°C	8-Lead SOIC_N 7" Reel	R-8	
AD628ARM	-40°C to +85°C	8-Lead MSOP	RM-8	JGA
AD628ARM-REEL	-40°C to +85°C	8-Lead MSOP 13" Reel	RM-8	JGA
AD628ARM-REEL7	-40°C to +85°C	8-Lead MSOP 7" Reel	RM-8	JGA
AD628ARMZ ¹	-40°C to +85°C	8-Lead MSOP	RM-8	JGZ
AD628ARMZ-RL ¹	-40°C to +85°C	8-Lead MSOP 13" Reel	RM-8	JGZ
AD628ARMZ-R7 ¹	-40°C to +85°C	8-Lead MSOP 7" Reel	RM-8	JGZ
AD628-EVAL		Evaluation Board		

 1 Z = RoHS Compliant Part.

©2002–2007 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. C02992-0-4/07(G)

