

LMC6062 Precision CMOS Dual Micropower Operational Amplifier General Description Features

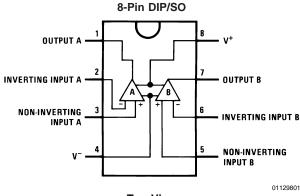
The LMC6062 is a precision dual low offset voltage, micropower operational amplifier, capable of precision single supply operation. Performance characteristics include ultra low input bias current, high voltage gain, rail-to-rail output swing, and an input common mode voltage range that includes ground. These features, plus its low power consumption, make the LMC6062 ideally suited for battery powered applications.

Other applications using the LMC6062 include precision full-wave rectifiers, integrators, references, sample-and-hold circuits, and true instrumentation amplifiers.

This device is built with National's advanced double-Poly Silicon-Gate CMOS process.

For designs that require higher speed, see the LMC6082 precision dual operational amplifier.

PATENT PENDING


(Typical Unless Otherwise Noted)

- Low offset voltage 100µV
- Ultra low supply current 16µA/Amplifier
- Operates from 4.5V to 15V single supply
- Ultra low input bias current 10fA
- Output swing within 10mV of supply rail, 100k load
- Input common-mode range includes V⁻
- High voltage gain 140dB
- Improved latchup immunity

Applications

- Instrumentation amplifier
- Photodiode and infrared detector preamplifier
- Transducer amplifiers
- Hand-held analytic instruments
- Medical instrumentation
- D/A converter
- Charge amplifier for piezoelectric transducers

Connection Diagram

Top View

Ordering Information

	Temperature	e Range	NCC		
Package	MilitaryIndustrial-55°C to +125°C-40°C to +85°C		NSC Drawing	Transport Media	
			Drawing		
8-Pin	LMC6062AMN	LMC6062AIN	N08E	Rail	
Molded DIP		LMC6062IN			
8-Pin		LMC6062AIM	M08A	Rail	
Small Outline		LMC6062IM			
8-Pin	LMC6062AMJ/883		J08A	Rail	
Ceramic DIP					

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Differential Input Voltage	±Supply Voltage
Voltage at Input/Output Pin	(V ⁺) +0.3V,
	(V⁻) –0.3V
Supply Voltage (V ⁺ – V ⁻)	16V
Output Short Circuit to V ⁺	(Note 11)
Output Short Circuit to V ⁻	(Note 2)
Lead Temperature	
(Soldering, 10 sec.)	260°C
Storage Temp. Range	–65°C to +150°C
Junction Temperature	150°C
ESD Tolerance (Note 4)	2 kV

Current at Input Pin	±10 mA
Current at Output Pin	±30 mA
Current at Power Supply Pin	40 mA
Power Dissipation	(Note 3)

Operating Ratings (Note 1)

Temperature Range	
LMC6062AM	$-55^{\circ}C \le T_{J} \le +125^{\circ}C$
LMC6062AI, LMC6082I	$-40^{\circ}C \le T_{J} \le +85^{\circ}C$
Supply Voltage	$4.5V \leq V^{+} \leq 15.5V$
Thermal Resistance (θ_{JA}) (Note 12))
8-Pin Molded DIP	115°C/W
8-Pin SO	193°C/W
Power Dissipation	(Note 10)

DC Electrical Characteristics

Unless otherwise specified, all limits guaranteed for $T_J = 25^{\circ}C$. **Boldface** limits apply at the temperature extremes. V⁺ = 5V, V⁻ = 0V, V_{CM} = 1.5V, V_O = 2.5V and R_L > 1M unless otherwise specified.

				Тур	LMC6062AM	LMC6062AI	LMC6062I	
Symbol	Parameter	Condit	ions	(Note 5)	Limit	Limit	Limit	Units
					(Note 6)	(Note 6)	(Note 6)	
V _{os}	Input Offset Voltage			100	350	350	800	μV
					1200	900	1300	Max
TCVos	Input Offset Voltage			1.0				μV/°C
	Average Drift							
I _B	Input Bias Current			0.010				pА
					100	4	4	Max
l _{os}	Input Offset Current			0.005				pА
					100	2	2	Max
R _{IN}	Input Resistance			>10				Tera
CMRR	Common Mode	$0V \le V_{CM} \le 12.0V$		85	75	75	66	dB
	Rejection Ratio	V ⁺ = 15V			70	72	63	Min
+PSRR	Positive Power Supply	$5V \le V^+ \le 15V$		85	75	75	66	dB
	Rejection Ratio	$V_{O} = 2.5V$			70	72	63	Min
-PSRR	Negative Power Supply	$0V \le V^- \le -10V$		100	84	84	74	dB
	Rejection Ratio				70	81	71	Min
V _{CM}	Input Common-Mode	V ⁺ = 5V and 15V		-0.4	-0.1	-0.1	-0.1	V
	Voltage Range	for CMRR ≥ 60 dB			0	0	0	Max
				V ⁺ – 1.9	V ⁺ - 2.3	V ⁺ – 2.3	V ⁺ – 2.3	V
					V ⁺ – 2.6	V ⁺ – 2.5	V+ – 2.5	Min
A _V	Large Signal	$R_L = 100 \text{ k}\Omega$	Sourcing	4000	400	400	300	V/mV
	Voltage Gain	(Note 7)			200	300	200	Min
			Sinking	3000	180	180	90	V/mV
					70	100	60	Min
		$R_L = 25 \text{ k}\Omega$	Sourcing	3000	400	400	200	V/mV
		(Note 7)			150	150	80	Min
			Sinking	2000	100	100	70	V/mV
					35	50	35	Min

DC Electrical Characteristics (Continued)

Unless otherwise specified, all limits guaranteed for $T_J = 25^{\circ}$ C. Boldface limits apply at the temperature extremes. V ⁺ = 5V	∕, V [_]
= 0V, V_{CM} = 1.5V, V_O = 2.5V and R_L > 1M unless otherwise specified.	

			Тур	LMC6062AM	LMC6062AI	LMC6062I	
Symbol	Parameter	Conditions	(Note 5)	Limit	Limit	Limit	Units
-				(Note 6)	(Note 6)	(Note 6)	
Vo	Output Swing	V ⁺ = 5V	4.995	4.990	4.990	4.950	V
		$R_L = 100 \text{ k}\Omega \text{ to } 2.5 \text{V}$		4.970	4.980	4.925	Min
			0.005	0.010	0.010	0.050	V
				0.030	0.020	0.075	Max
		V ⁺ = 5V	4.990	4.975	4.975	4.950	V
		$R_L = 25 \text{ k}\Omega \text{ to } 2.5 \text{V}$		4.955	4.965	4.850	Min
			0.010	0.020	0.020	0.050	V
				0.045	0.035	0.150	Max
		V ⁺ = 15V	14.990	14.975	14.975	14.950	V
		$R_L = 100 \text{ k}\Omega \text{ to } 7.5 \text{V}$		14.955	14.965	14.925	Min
			0.010	0.025	0.025	0.050	V
				0.050	0.035	0.075	Max
		V ⁺ = 15V	14.965	14.900	14.900	14.850	V
		$R_L = 25 \text{ k}\Omega \text{ to } 7.5 \text{V}$		14.800	14.850	14.800	Min
			0.025	0.050	0.050	0.100	V
				0.200	0.150	0.200	Max
lo	Output Current	Sourcing, $V_O = 0V$	22	16	16	13	mA
	V ⁺ = 5V			8	10	8	Min
		Sinking, $V_{O} = 5V$	21	16	16	16	mA
				7	8	8	Min
I _o	Output Current	Sourcing, $V_O = 0V$	25	15	15	15	mA
	V ⁺ = 15V			9	10	10	Min
		Sinking, V _O = 13V	35	20	20	20	mA
		(Note 11)		7	8	8	Min
ls	Supply Current	Both Amplifiers	32	38	38	46	μA
		$V^+ = +5V, V_0 = 1.5V$		60	46	56	Max
		Both Amplifiers	40	47	47	57	μA
		$V^+ = +15V, V_0 = 7.5V$		70	55	66	Max

LMC6062

AC Electrical Characteristics

Unless otherwise specified, all limits guaranteed for $T_J = 25^{\circ}C$, **Boldface** limits apply at the temperature extremes. V⁺ = 5V, V⁻ = 0V, V_{CM} = 1.5V, V_O = 2.5V and R_L > 1M unless otherwise specified.

			Тур	LMC6062AM	LMC6062AI	LMC6062I	
Symbol	Parameter	Conditions	(Note 5)	Limit	Limit	Limit	Units
				(Note 6)	(Note 6)	(Note 6)	
SR	Slew Rate	(Note 8)	35	20	20	15	V/ms
				8	10	7	Min
GBW	Gain-Bandwidth Product		100				kHz
θ _m	Phase Margin		50				Deg
	Amp-to-Amp Isolation	(Note 9)	155				dB
e _n	Input-Referred Voltage Noise	F = 1 kHz	83				nV/√ Hz
i _n	Input-Referred Current Noise	F = 1 kHz	0.0002				pA/√ Hz
T.H.D.	Total Harmonic Distortion	F = 1 kHz, A _V = -5 R _L = 100 kΩ, V _O = 2 V _{PF} ±5V Supply	0.01				%

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is intended to be functional, but do not guarantee specific performance limits. For guaranteed specifications and test conditions, see the Electrical Characteristics. The guaranteed specifications apply only for the test conditions listed.

Note 2: Applies to both single-supply and split-supply operation. Continous short circuit operation at elevated ambient temperature can result in exceeding the maximum allowed junction temperature of 150°C. Output currents in excess of ±30 mA over long term may adversely affect reliability.

Note 3: The maximum power dissipation is a function of $T_{J(Max)}$, θ_{JA} , and T_A . The maximum allowable power dissipation at any ambient temperature is $P_D = (T_{J(Max)} - T_A)/\theta_{JA}$.

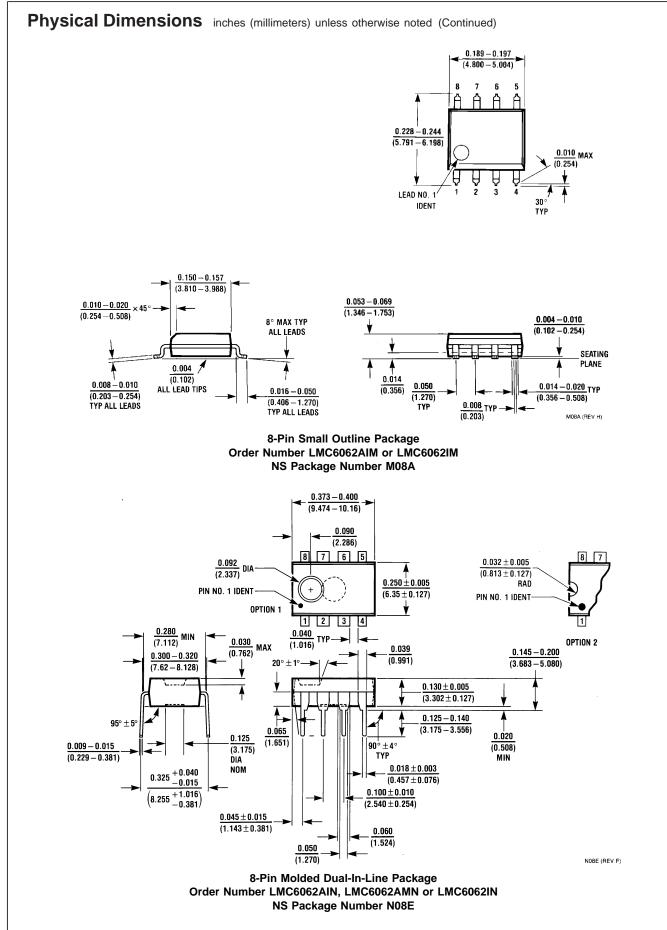
Note 4: Human body model, 1.5 k Ω in series with 100 pF.

Note 5: Typical values represent the most likely parametric norm.

Note 6: All limits are guaranteed by testing or statistical analysis.

Note 7: V^+ = 15V, V_{CM} = 7.5V and R_L connected to 7.5V. For Sourcing tests, 7.5V $\leq V_O \leq$ 11.5V. For Sinking tests, 2.5V $\leq V_O \leq$ 7.5V.

Note 8: V⁺ = 15V. Connected as Voltage Follower with 10V step input. Number specified is the slower of the positive and negative slew rates.


Note 9: Input referred V⁺ = 15V and R_L = 100 k Ω connected to 7.5V. Each amp excited in turn with 100 Hz to produce V₀ = 12 V_{PP}.

Note 10: For operating at elevated temperatures the device must be derated based on the thermal resistance θ_{JA} with $P_D = (T_J - T_A)/\theta_{JA}$.

Note 11: Do not connect output to V⁺, when V⁺ is greater than 13V or reliability witll be adversely affected.

Note 12: All numbers apply for packages soldered directly into a PC board.

Note 13: For guaranteed Military Temperature Range parameters, see RETSMC6062X.

