Data Sheet FN2906.6 # 8.5MHz, Ultra-Low Noise Precision Operational Amplifier The HA-5127 monolithic operational amplifier features an unparalleled combination of precision DC and wideband high speed characteristics. Utilizing the Intersil D. I. technology and advanced processing techniques, this unique design unites low noise $(3\text{nV}/\sqrt{\text{Hz}})$ precision instrumentation performance with high speed $(10\text{V}/\mu\text{s})$ wideband capability. This amplifier's impressive list of features include low V_{OS} (10 μ V), wide unity gain-bandwidth (8.5MHz), high open loop gain (1800V/mV), and high CMRR (126dB). Additionally, this flexible device operates over a wide supply range (\pm 5V to \pm 15V) while consuming only 140mW of power. Using the HA-5127 allows designers to minimize errors while maximizing speed and bandwidth. This device is ideally suited for low level transducer signal amplifier circuits. Other applications which can utilize the HA-5127's qualities include instrumentation amplifiers, pulse amplifiers, audio preamplifiers, and signal conditioning circuits. This device can easily be used as a design enhancement by directly replacing the 725, OP25, OP06, OP07, OP27 and OP37. For the military grade product, refer to the HA-5127/883 data sheet. ## **Pinout** HA-5127 (CERDIP, SOIC) TOP VIEW #### **Features** | • | Slew Rate10V/μs | |---|---| | • | Unity Gain Bandwidth 8.5MHz | | • | Low Noise 3nV/ $\sqrt{\text{Hz}}$ at 1kHz | | • | $Low \ V_{OS}. \qquad \qquad 10 \mu V$ | | • | High CMRR | | • | High Gain | #### Pb-Free Plus Anneal Available (RoHS Compliant) # **Applications** - High Speed Signal Conditioners - · Wide Bandwidth Instrumentation Amplifiers - · Low Level Transducer Amplifiers - · Fast, Low Level Voltage Comparators - · Highest Quality Audio Preamplifiers - · Pulse/RF Amplifiers # **Ordering Information** | PART NUMBER
(BRAND) | TEMP.
RANGE (°C) | PACKAGE | PKG.
DWG.# | |------------------------------------|----------------------------|------------------------|---------------| | HA7-5127A-5 | 0 to 75 | 8 Ld CERDIP | F8.3A | | HA9P5127-5
(H51275) | 0 to 75 | 8 Ld SOIC | M8.15 | | HA9P5127-5Z
(H51275Z) (Note) | 0 to 75 | 8 Ld SOIC
(Pb-free) | M8.15 | | HA9P5127-5ZX96
(H51275Z) (Note) | 8 Ld SOIC Tap
(Pb-free) | M8.15 | | NOTE: Intersil Pb-free plus anneal products employ special Pb-free material sets; molding compounds/die attach materials and 100% matte tin plate termination finish, which are RoHS compliant and compatible with both SnPb and Pb-free soldering operations. Intersil Pb-free products are MSL classified at Pb-free peak reflow temperatures that meet or exceed the Pb-free requirements of IPC/JEDEC J STD-020. ## **Absolute Maximum Ratings** | Supply Voltage Between V+ and V- Terminals | 44V | |--|-------| | Differential Input Voltage (Note 3) | 0.7V | | Output Current Full Short Circuit Prote | ction | ## **Operating Conditions** | Temperature Range | | |-------------------|-------------| | HA5127/27A-5 | 0°C to 75°C | ### **Thermal Information** | Thermal Resistance (Typical, Note 2) | θ _{JA} (°C/W) | θ _{JC} (oC/W) | |---------------------------------------|------------------------|------------------------| | CERDIP Package | 115 | 28 | | SOIC Package | 157 | N/A | | Maximum Junction Temperature (Ceramic | | e 1)175 ⁰ C | | Maximum Junction Temperature (Plastic | Package) | 150 ⁰ C | | Maximum Storage Temperature Range . | 6 | 5°C to 150°C | | Maximum Lead Temperature (Soldering 1 | 10s) | 300°C | | (SOIC - Lead Tips Only) | | | CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. #### NOTES: - Maximum power dissipation, including output load must be designed to maintain the maximum junction temperature below 175°C for Hermetic packages, and below 150°C for the plastic packages. - 2. θJA is measured with the component mounted on a low effective thermal conductivity test board in free air. See Tech Brief TB379 for details. - 3. For differential input voltages greater than 0.7V, the input current must be limited to 25mA to protect the back-to-back input diodes. ## **Electrical Specifications** $V_{SUPPLY} = \pm 15V$, $C_{I} < 50pF$, $R_{S} < 100\Omega$ | | TEST CONDITIONS | TEMP.
(°C) | HA-5127A | | | HA-5127 | | | | |--|-------------------------------------|---------------|----------|-------|------|---------|-------|------|--------------------| | PARAMETER | | | MIN | TYP | MAX | MIN | TYP | MAX | UNITS | | INPUT CHARACTERISTICS | | | J. | ı | J. | | | l. | 1. | | Offset Voltage | | 25 | - | 10 | 25 | - | 30 | 100 | μV | | | | Full | - | 30 | 60 | - | 70 | 300 | μV | | Average Offset Voltage Drift | | Full | - | 0.2 | 0.6 | - | 0.4 | 1.8 | μV/ ^o C | | Bias Current | | 25 | - | ±10 | ±40 | - | ±15 | ±80 | nA | | | | Full | - | ±20 | ±60 | - | ±35 | ±150 | nA | | Offset Current | | 25 | - | 7 | 35 | - | 12 | 75 | nA | | | | Full | - | 15 | 50 | - | 30 | 135 | nA | | Common Mode Range | | Full | ±10.3 | ±11.5 | - | ±10.3 | ±11.5 | - | V | | Differential Input Resistance (Note 4) | | 25 | 1.5 | 6 | - | 0.8 | 4 | - | MΩ | | Input Noise Voltage (Note 5) | 0.1Hz to 10Hz | 25 | - | 0.08 | 0.18 | - | 0.09 | 0.25 | μV _{P-P} | | Input Noise Voltage Density | f = 10Hz | 25 | - | 3.5 | 8.0 | - | 3.8 | 8.0 | nV/√Hz | | (Note 6) | f = 100Hz | | - | 3.1 | 4.5 | - | 3.3 | 4.5 | nV/√Hz | | | f = 1000Hz | | - | 3.0 | 3.8 | - | 3.2 | 3.8 | nV/√Hz | | Input Noise Current Density | f = 10Hz | 25 | - | 1.7 | 4.0 | - | 1.7 | - | pA/√Hz | | (Note 6) | f = 100Hz | | - | 1.0 | 2.3 | - | 1.0 | - | pA/√Hz | | | f = 1000Hz | | - | 0.4 | 0.6 | - | 0.4 | 0.6 | pA/√Hz | | TRANSFER CHARACTERISTICS | • | | | | | | | | | | Large Signal Voltage Gain | $V_{OUT} = \pm 10V, R_L = 2k\Omega$ | 25 | 1000 | 1800 | - | 700 | 1500 | - | V/mV | | | | Full | 600 | 1200 | - | 300 | 800 | - | V/mV | | Common Mode Rejection Ratio | $V_{CM} = \pm 10V$ | Full | 114 | 126 | - | 100 | 120 | - | dB | | Minimum Stable Gain | | 25 | 1 | - | - | 1 | - | - | V/V | | Unity-Gain-Bandwidth | | 25 | 5 | 8.5 | - | 5 | 8.5 | - | MHz | | OUTPUT CHARACTERISTICS | • | | | | | | | | | | Output Voltage Swing | $R_L = 600\Omega$ | 25 | ±10.0 | ±11.5 | - | ±10.0 | ±11.5 | - | V | | | $R_L = 2k\Omega$ | Full | ±11.7 | ±13.8 | - | ±11.5 | ±13.5 | - | V | | Full Power Bandwidth (Note 7) | | 25 | 111 | 160 | - | 111 | 160 | - | kHz | | Output Resistance | Open Loop | 25 | - | 70 | - | - | 70 | - | Ω | | Output Current | | 25 | 16.5 | 25 | - | 16.5 | 25 | - | mA | | TRANSIENT RESPONSE (Note 8) | 1 | 1 | ı | 1 | ı | 1 | 1 | | 1 | | Rise Time | | 25 | - | - | 150 | - | - | 150 | ns | PN2906.6 # **Electrical Specifications** $V_{SUPPLY} = \pm 15V$, $C_L < 50pF$, $R_S < 100\Omega$ (Continued) | | | TEMP. HA-5127A | | HA-5127 | | | | | | |------------------------------|--|----------------|-----|---------|-----|-----|-----|-----|-------| | PARAMETER | TEST CONDITIONS | (°C) | MIN | TYP | MAX | MIN | TYP | MAX | UNITS | | Slew Rate | V _{OUT} = 10V | 25 | 7 | 10 | - | 7 | 10 | - | V/μs | | Settling Time (Note 9) | | 25 | - | 1.5 | - | - | 1.5 | - | μS | | Overshoot | | 25 | - | 20 | 40 | - | 20 | 40 | % | | POWER SUPPLY CHARACTERISTICS | | | | | | | | | | | Supply Current | | 25 | - | 3.5 | - | - | 3.5 | - | mA | | | | Full | - | - | 4.0 | - | - | 4.0 | mA | | Power Supply Rejection Ratio | $V_S = \pm 4.5 \text{V to } \pm 18 \text{V}$ | Full | - | 2 | 4 | - | 16 | 51 | μV/V | #### NOTES: - 4. This parameter value is based upon design calculations. - 5. Refer to Typical Performance Curves. - 6. The limits for this parameter are guaranteed based on lab characterization, and reflect lot-to-lot variation. - 7. Full power bandwidth guaranteed based on slew rate measurement using: FPBW = $\frac{\text{Slew Rate}}{2\pi V_{\text{PEAK}}}$ - 8. Refer to Test Circuits section of the data sheet. - 9. Settling time is specified to 0.1% of final value for a 10V output step and $A_V = -1$. ### **Test Circuits and Waveforms** FIGURE 1. LARGE AND SMALL SIGNAL RESPONSE TEST CIRCUITS LARGE SIGNAL RESPONSE Vertical Scale: 100mV/Div. Horizontal Scale: 200ns/Div. ## **SMALL SIGNAL RESPONSE** #### NOTES: - 10. $A_V = -1$. - 11. Feedback and summing resistors should be 0.1% matched. - 12. Clipping diodes are optional. HP5082-2810 recommended. FIGURE 2. SETTLING TIME TEST CIRCUIT 3 int<u>ersil</u> FN2906.6