

Data Sheet FN2921.11

110MHz, High Slew Rate, High Output Current Buffer

The HA-5002 is a monolithic, wideband, high slew rate, high output current, buffer amplifier.

Utilizing the advantages of the Intersil D.I. technologies, the HA-5002 current buffer offers 1300V/ μ s slew rate with 110MHz of bandwidth. The \pm 200mA output current capability is enhanced by a 3 Ω output impedance.

The monolithic HA-5002 will replace the hybrid LH0002 with corresponding performance increases. These characteristics range from the $3000 k\Omega$ input impedance to the increased output voltage swing. Monolithic design technologies have allowed a more precise buffer to be developed with more than an order of magnitude smaller gain error.

The HA-5002 will provide many present hybrid users with a higher degree of reliability and at the same time increase overall circuit performance.

For the military grade product, refer to the HA-5002/883 datasheet.

Features

Voltage Gain	0.995
High Input Impedance)00kΩ
Low Output Impedance	3Ω
Very High Slew Rate)0V/μs
Very Wide Bandwidth	0MHz
High Output Current	200mA
Pulsed Output Current	00mA

- · Monolithic Construction
- Pb-Free Plus Anneal Available (RoHS Compliant)

Applications

- · Line Driver
- · Data Acquistion
- 110MHz Buffer
- · Radara Cable Driver
- · High Power Current Booster
- · High Power Current Source
- · Sample and Holds
- · Video Products

Ordering Information

PART NUMBER	PART MARKING	TEMP. RANGE (°C)	PACKAGE	PKG. DWG.#
HA2-5002-2	HA2-5002-2	-55 to 125	8 Pin Metal Can	T8.C
HA2-5002-5	HA2-5002-5	0 to 75	8 Pin Metal Can	T8.C
HA3-5002-5	HA3-5002-5	0 to 75	8 Ld PDIP	E8.3
HA3-5002-5Z (Note)	HA3-5002-5Z	0 to 75	8 Ld PDIP* (Pb-free)	E8.3
HA4P5002-5	HA4P5002-5	0 to 75	20 Ld PLCC	N20.35
HA4P5002-5Z (Note)	HA4P5002-5Z	0 to 75	20 Ld PLCC (Pb-free)	N20.35
HA9P5002-5	50025	0 to 75	8 Ld SOIC	M8.15
HA9P5002-5Z (Note)	50025Z	0 to 75	8 Ld SOIC (Pb-free)	M8.15
HA9P5002-9	50029	-40 to 85	8 Ld SOIC	M8.15
HA9P5002-9Z (Note)	50029Z	-40 to 85	8 Ld SOIC (Pb-free)	M8.15

^{*}Pb-free PDIPs can be used for through hole wave solder processing only. They are not intended for use in Reflow solder processing applications.

NOTE: Intersil Pb-free plus anneal products employ special Pb-free material sets; molding compounds/die attach materials and 100% matte tin plate termination finish, which are RoHS compliant and compatible with both SnPb and Pb-free soldering operations. Intersil Pb-free products are MSL classified at Pb-free peak reflow temperatures that meet or exceed the Pb-free requirements of IPC/JEDEC J STD-020.

Absolute Maximum Ratings

Voltage Between V+ and V- Terminals 44	٧
Input Voltage V ₁ + to V ₂	1-
Output Current (Continuous) ±200m	ıΑ
Output Current (50ms On, 1s Off)	ıA

Operating Conditions

Temperature Range	
HA-5002-2	55°C to 125°C
HA-5002-5	0°C to 75°C
HA-5002-9	40°C to 85°C

Thermal Information

Thermal Resistance (Typical, Note 2)	θ_{JA} (°C/W)	θ _{JC} (°C/W)
PDIP Package*	92	N/A
Metal Can Package	155	67
PLCC Package	74	N/A
SOIC Package	157	N/A
Max Junction Temperature (Hermetic Packa	ges, Note 1).	175°C
Max Junction Temperature (Plastic Package	s, Note 1)	150°C
Max Storage Temperature Range	6	5°C to 150°C
Max Lead Temperature (Soldering 10s)		300°C
(PLCC and SOIC - Lead Tips Only)		

^{*}Pb-free PDIPs can be used for through hole wave solder processing only. They are not intended for use in Reflow solder processing applications.

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

- 1. Maximum power dissipation, including load conditions, must be designed to maintain the maximum junction temperature below 175°C for the can packages, and below 150°C for the plastic packages.
- 2. θ_{JA} is measured with the component mounted on an evaluation PC board in free air.

Electrical Specifications $V_{SUPPLY} = \pm 12V$ to $\pm 15V$, $R_S = 50\Omega$, $R_L = 1k\Omega$, $C_L = 10pF$, Unless Otherwise Specified

	TEST	TEMP	HA-5002-2			HA-5002-5, -9			
PARAMETER	CONDITIONS	(°C)	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
INPUT CHARACTERISTICS						•			*
Offset Voltage		25	-	5	20	-	5	20	mV
		Full	-	10	30	-	10	30	mV
Average Offset Voltage Drift		Full	-	30	-	-	30	-	μV/°C
Bias Current		25	-	2	7	-	2	7	μΑ
		Full	-	3.4	10	-	2.4	10	μΑ
Input Resistance		Full	1.5	3	-	1.5	3	-	ΜΩ
Input Noise Voltage	10Hz-1MHz	25	-	18	-	-	18	-	μV _{P-P}
TRANSFER CHARACTERISTICS	S								
Voltage Gain	$R_L = 50\Omega$	25	-	0.900	-	-	0.900	-	V/V
(V _{OUT} = ±10V)	$R_L = 100\Omega$	25	=	0.971	-	-	0.971	-	V/V
	$R_L = 1k\Omega$	25	-	0.995	-	-	0.995	-	V/V
	$R_L = 1k\Omega$	Full	0.980	-	-	0.980	-	-	V/V
-3dB Bandwidth	$V_{IN} = 1V_{P-P}$	25	-	110	-	-	110	-	MHz
AC Current Gain		25	-	40	-	-	40	-	A/mA
OUTPUT CHARACTERISTICS							*		*
Output Voltage Swing	$R_L = 100\Omega$	25	±10	±10.7	-	±10	±11.2	-	V
	$R_L = 1k\Omega$, $V_S = \pm 15V$	Full	±10	±13.5	-	±10	±13.9	-	V
	$R_L = 1k\Omega$, $V_S = \pm 12V$	Full	±10	±10.5	-	±10	±10.5	-	V
Output Current	$V_{IN} = \pm 10V$, $R_L = 40\Omega$	25	-	220	-	-	220	-	mA
Output Resistance		Full	-	3	10	-	3	10	Ω
Harmonic Distortion	$V_{IN} = 1V_{RMS}$, $f = 10kHz$	25	=	<0.005	-	-	<0.005	-	%
TRANSIENT RESPONSE						•	*		*
Full Power Bandwidth (Note 3)		25	-	20.7	-	-	20.7	-	MHz
Rise Time		25	-	3.6	-	-	3.6	-	ns
Propagation Delay		25	-	2	-	-	2	-	ns
Overshoot		25	-	30	-	-	30	-	%
Slew Rate		25	1.0	1.3	-	1.0	1.3	-	V/ns
Settling Time	To 0.1%	25	-	50	-	-	50	-	ns

intersil FN2921.11

 $\textbf{Electrical Specifications} \hspace{0.5cm} V_{SUPPLY} = \pm 12 \text{V to } \pm 15 \text{V}, \hspace{0.1cm} R_S = 50 \Omega, \hspace{0.1cm} R_L = 1 \text{k}\Omega, \hspace{0.1cm} C_L = 10 \text{pF, Unless Otherwise Specified} \hspace{0.1cm} \textbf{(Continued)} \hspace{0.1cm} \textbf{(Continued)}$

	TEST	TEST TEMP HA-5002-2			HA-5002-5, -9				
PARAMETER	CONDITIONS	(°C)	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
Differential Gain	$R_L = 500\Omega$	25	-	0.06	-	-	0.06	-	%
Differential Phase	$R_L = 500\Omega$	25	-	0.22	-	-	0.22	-	Degrees
POWER REQUIREMENTS									
Supply Current		25	-	8.3	-	-	8.3	-	mA
		Full	-	-	10	-	-	10	mA
Power Supply Rejection Ratio	A _V = 10V	Full	54	64	-	54	64	-	dB

NOTE:

3. FPBW =
$$\frac{\text{Slew Rate}}{2\pi V_{\text{PEAK}}}$$
; V_{P} = 10V ·

Test Circuit and Waveforms

FIGURE 1. LARGE AND SMALL SIGNAL RESPONSE

SMALL SIGNAL WAVEFORMS

SMALL SIGNAL WAVEFORMS

intersil FN2921.11

Dual-In-Line Plastic Packages (PDIP)

NOTES:

- Controlling Dimensions: INCH. In case of conflict between English and Metric dimensions, the inch dimensions control.
- 2. Dimensioning and tolerancing per ANSI Y14.5M-1982.
- 3. Symbols are defined in the "MO Series Symbol List" in Section 2.2 of Publication No. 95.
- 4. Dimensions A, A1 and L are measured with the package seated in JEDEC seating plane gauge GS-3.
- D, D1, and E1 dimensions do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.010 inch (0.25mm).
- E and e_A are measured with the leads constrained to be perpendicular to datum -C-.
- 7. e_B and e_C are measured at the lead tips with the leads unconstrained. e_C must be zero or greater.
- 8. B1 maximum dimensions do not include dambar protrusions. Dambar protrusions shall not exceed 0.010 inch (0.25mm).
- 9. N is the maximum number of terminal positions.
- Corner leads (1, N, N/2 and N/2 + 1) for E8.3, E16.3, E18.3, E28.3, E42.6 will have a B1 dimension of 0.030 - 0.045 inch (0.76 - 1.14mm).

E8.3 (JEDEC MS-001-BA ISSUE D) 8 LEAD DUAL-IN-LINE PLASTIC PACKAGE

	INCHES		MILLIM				
SYMBOL	MIN	MAX	MIN	MAX	NOTES		
Α	-	0.210	-	5.33	4		
A1	0.015	-	0.39	-	4		
A2	0.115	0.195	2.93	4.95	-		
В	0.014	0.022	0.356	0.558	-		
B1	0.045	0.070	1.15	1.77	8, 10		
С	0.008	0.014	0.204	0.355	-		
D	0.355	0.400	9.01	10.16	5		
D1	0.005	-	0.13	-	5		
Е	0.300	0.325	7.62	8.25	6		
E1	0.240	0.280	6.10	7.11	5		
е	0.100	0.100 BSC 2.54 BSC		BSC	-		
e _A	0.300	0.300 BSC) BSC 7.62 BSC		BSC	6
e _B	-	0.430	-	10.92	7		
L	0.115	0.150	2.93	3.81	4		
N	8		8		9		

Rev. 0 12/93

intersil FN2921.11

Small Outline Plastic Packages (SOIC)

NOTES:

- Symbols are defined in the "MO Series Symbol List" in Section 2.2 of Publication Number 95.
- 2. Dimensioning and tolerancing per ANSI Y14.5M-1982.
- Dimension "D" does not include mold flash, protrusions or gate burrs. Mold flash, protrusion and gate burrs shall not exceed 0.15mm (0.006 inch) per side.
- Dimension "E" does not include interlead flash or protrusions. Interlead flash and protrusions shall not exceed 0.25mm (0.010 inch) per side
- 5. The chamfer on the body is optional. If it is not present, a visual index feature must be located within the crosshatched area.
- 6. "L" is the length of terminal for soldering to a substrate.
- 7. "N" is the number of terminal positions.
- 8. Terminal numbers are shown for reference only.
- The lead width "B", as measured 0.36mm (0.014 inch) or greater above the seating plane, shall not exceed a maximum value of 0.61mm (0.024 inch).
- Controlling dimension: MILLIMETER. Converted inch dimensions are not necessarily exact.

M8.15 (JEDEC MS-012-AA ISSUE C)
8 LEAD NARROW BODY SMALL OUTLINE PLASTIC PACKAGE

	INCHES		MILLIN		
SYMBOL	MIN	MAX	MIN	MAX	NOTES
Α	0.0532	0.0688	1.35	1.75	-
A1	0.0040	0.0098	0.10	0.25	-
В	0.013	0.020	0.33	0.51	9
С	0.0075	0.0098	0.19	0.25	-
D	0.1890	0.1968	4.80	5.00	3
Е	0.1497	0.1574	3.80	4.00	4
е	0.050	BSC	1.27 BSC		-
Н	0.2284	0.2440	5.80	6.20	-
h	0.0099	0.0196	0.25	0.50	5
L	0.016	0.050	0.40	1.27	6
N	8			8	7
α	0°	8°	0°	8°	-

Rev. 1 6/05