semiconductors :: product :: Fast Recovery Rectifiers

Product: Fast Recovery Rectifiers

Fast Recovery Rectifiers are devices used in applications where commutation times around $150 \div 500$ ns are required. Switching Power Supplies, Electronic Ballast, Small Household Appliances are some of the typical end uses.

Manufactured using HYPERECTIFIER© Glass Passivated technology, we offer these devices housed either in leaded packages or SMD.

Product	Family	$\mathrm{I}_{\mathrm{F}(\mathrm{AV})}(\mathrm{A})$	$\mathrm{I}_{\mathrm{FSM}}(\mathrm{A})$	$\mathrm{V}_{\mathrm{RRM}}(\mathrm{V})$	$\mathrm{V}_{\mathrm{F}}(\mathrm{V})$	$\mathrm{T}_{\mathrm{RR}}(\mathrm{ns})$	OUTLINE
RGP301	$\mathrm{RGP30}$	3.0	125	600	1.3	250	DO201-AD

3 Amp. Glass Passivated Fast Recovery Rectifier

| Dimensions in mm. | DO-201 AD
 (Plastic) | Voltage
 50 to 1000 V . |
| :--- | :--- | :--- | :--- |
| 3.0 A. at $55^{\circ} \mathrm{C}$. | | |

Maximum Ratings, according to IEC publication No. 134

		$\begin{gathered} \hline \text { RGP } \\ 30 \mathrm{~A} \end{gathered}$	$\begin{gathered} \text { RGP } \\ \text { 30B } \end{gathered}$	$\begin{gathered} \text { RGP } \\ \text { 30D } \end{gathered}$	$\begin{array}{\|c\|} \hline \text { RGP } \\ \text { 30G } \end{array}$	$\begin{array}{\|c\|} \hline \text { RGP } \\ \text { 30J } \end{array}$	$\begin{gathered} \text { RGP } \\ \text { 30K } \end{gathered}$	$\begin{aligned} & \text { RGP } \\ & \text { 30M } \end{aligned}$	$\begin{aligned} & \hline \text { RGP } \\ & \text { 30MIT } \end{aligned}$
$\mathrm{V}_{\text {RRM }}$	Peak recurrent reverse voltage (V)	50	100	200	400	600	800	1000	1000
$\mathrm{I}_{\text {F(AV) }}$	Forward current at Tamb $=55^{\circ} \mathrm{C}$	3 A							
$\mathrm{I}_{\text {FRM }}$	Recurrent peak forward current	30 A							
$\mathrm{I}_{\text {FSM }}$	8.3 ms . peak forward surge current Jedec Method)	125 A							
t_{rr}	Max. reverse recovery $I_{\mathrm{F}}=0.5 \mathrm{~A}$ time from $\mathrm{I}_{\mathrm{R}}=1 \mathrm{~A}$ $\mathrm{I}_{\mathrm{RR}}=0.25 \mathrm{~A}$	150 ns				250 ns	500 ns		300 ns
T_{j}	Operating temperature range	-65 to $+175^{\circ} \mathrm{C}$							
$\mathrm{T}_{\text {stg }}$	Storage temperature range	-65 to $+175^{\circ} \mathrm{C}$							
$\mathrm{E}_{\text {RSM }}$	Maximum non repetitive peak reverse avalanche energy. $\mathrm{I}_{\mathrm{R}}=1 \mathrm{~A} ; \mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$	20 mJ							

Electrical Characteristics at Tamb $=25^{\circ} \mathrm{C}$

V_{F}	Max. forward voltage drop at $\mathrm{I}_{\mathrm{F}}=3 \mathrm{~A}$	1.3V
I_{R}	$\begin{array}{ll}\text { Max. reverse current at } \mathrm{V}_{\text {RRM }} & \begin{array}{l}\text { at } 25^{\circ} \mathrm{C} \\ \text { at } 125{ }^{\circ} \mathrm{C}\end{array}\end{array}$	$\begin{array}{r} 5 \mu \mathrm{~A} \\ 100 \mu \mathrm{~A} \end{array}$
$\mathrm{R}_{\text {thija }}$	Thermal resistance ($\mathrm{I}=10 \mathrm{~mm}$.$)) \begin{gathered}\text { Max. } \\ \text { Typ. }\end{gathered}$	$\begin{aligned} & 30^{\circ} \mathrm{C} / \mathrm{W} \\ & 15^{\circ} \mathrm{C} / \mathrm{W} \\ & \hline \end{aligned}$

