
semiconductors :: product :: Ultrafast Recovery Rectifiers

Product: Ultrafast Recovery Rectifiers

FAGOR ELECTRONICA's Ultrafast Recovery Rectifiers offer reverse recovery times down to 30 ns using broad range of forward current possibilities and packages.

Ideal for high frequency applications like SMPS, Monitors, Electronic Ballast, Inverters....
Manufactured using HYPERECTIFIER © technology, we offer these devices housed either in leaded packages or SMD.

Product	Family	$\mathrm{I}_{\mathrm{F}(\mathrm{AV})}(\mathrm{A})$	$\mathrm{I}_{\mathrm{FSM}}(\mathrm{A})$	$\mathrm{V}_{\mathrm{RRM}}(\mathrm{V})$	$\mathrm{V}_{\mathrm{F}}(\mathrm{V})$	$\mathrm{T}_{\mathrm{RR}}(\mathrm{ns})$	OUTLINE
FUF4007	FUF4000	1.0	30	1000	1.7	75	DO-41

1 Amp. Glass Passivated Ultrafast Recovery Rectifier

Maximum Ratings, according to IEC publication No. 134

		FVF4001	fif 402	fif 4003	Fiv409	fif 4005	Fiv406	fif 4007
$\mathrm{V}_{\text {RRM }}$	Peak Recurrent reverse voltage (V)	50	100	200	400	600	800	1000
$\mathrm{V}_{\text {RMS }}$	Maximum RMS voltage	35	70	140	280	420	560	700
$V_{D C}$	Maximum DC blocking voltage	50	100	200	400	600	800	1000
$\mathrm{I}_{\text {FAVD }}$	Forward current at Tamb $=55^{\circ} \mathrm{C}$				1 A			
$\mathrm{I}_{\text {PM }}$	Recurrent peak forward surge current				10 A			
$\mathrm{I}_{\text {FSM }}$	8.3 ms. peak forward surge current (Jedec Method)				30 A			
$\mathrm{t}_{\text {tr }}$	Max. reverse recovery time from $\mathrm{I}_{\mathrm{F}}=0.5 \mathrm{~A} ; \mathrm{I}_{\mathrm{R}}=1 \mathrm{~A} ; \mathrm{I}_{\mathrm{RR}}=0.25 \mathrm{~A}$			ns			75 ns	
C_{j}	Typical Junction Capacitance at 1 MHz and reverse voltaje of $4 \mathrm{~V}_{\mathrm{DC}}$				15 pF			
T_{j}	Operating temperature range			-65	to +15	$0^{\circ} \mathrm{C}$		
$\mathrm{T}_{\text {stg }}$	Storage temperature range			-65	to +150	$0^{\circ} \mathrm{C}$		
$\mathrm{E}_{\text {RSM }}$	Maximum non repetitive peak reverse avalanche energy. $\mathrm{IR}_{\mathrm{R}}=0.5 \mathrm{~A} ; \mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$				20 m			

Electrical Characteristics at Tamb $=25^{\circ} \mathrm{C}$

V_{F}	Max. forward voltage drop at $\mathrm{I}_{\mathrm{F}}=1 \mathrm{~A}$	1.3 V	1.7 V
I_{R}	Max. reverse current at $\mathrm{V}_{\text {RRM }}$ at $25^{\circ} \mathrm{C}$	$5 \mu \mathrm{~A}$	
$\mathrm{R}_{\mathrm{Rbj} \mathrm{j}-\mathrm{a}}$	Max. thermal resistance $(\mathrm{l}=10 \mathrm{~mm})$.	$50^{\circ} \mathrm{C} / \mathrm{W}$	

