

On-State Current Gate Trigger Current

12 Amp

< 10 mA

Off-State Voltage

200 V ÷ 800 V

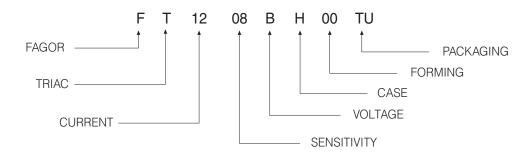
This series of **TRIAC**s uses a high performance PNPN technology.

These parts are intended for general purpose AC switching applications with highly inductive loads.

Absolute Maximum Ratings, according to IEC publication No. 134

SYMBOL	PARAMETER	CONDITIONS	Value	Unit
I _{T(RMS)}	RMS On-state Current (full sine wave)	All Conduction Angle, T _C = 95 °C	12	А
I _{TSM}	Non-repetitive On-State Current	Full Cycle, 60 Hz (t = 16.7 ms)	125	А
I _{TSM}	Non-repetitive On-State Current	Full Cycle, 50 Hz (t = 20 ms)	120	А
l²t	Fusing Current	tp = 10 ms, Half Cycle	72	A ² s
I _{GM}	Peak Gate Current	20 μs max. Tj =125°C	4	А
$P_{G(AV)}$	Average Gate Power Dissipation	Tj =125°C	1	W
dI/dt	Critical rate of rise of on-state current	$I_G = 2x I_{GT}, t_r \le 100 \text{ns}$ $f = 120 \text{ Hz}, T_j = 125^{\circ}\text{C}$	50	A/µs
T _i	Operating Temperature		(-40 +125)	°C
T _{stg}	Storage Temperature		(-40 +150)	°C
T _{sld}	Soldering Temperature	10s max	260	°C

SYMBOL	SYMBOL PARAMETER		VOLTAGE				
		В	D	М	S	N	
V_{DRM}	Repetitive Peak Off State	200	400	600	700	800	V
V_{RRM}	Voltage						



Electrical Characteristics

SYMBOL	PARAMETER	CONDITIONS		Quadrant		SENSITIVITY	Unit
						08	
I _{GT} ⁽¹⁾	Gate Trigger Current	$V_D=12V_{DC},R_L=33\Omega,$	$T_j = 25$ °C	Q1÷Q3 Q4	MAX MAX	10	mA mA
V_{GT}	Gate Trigger Voltage	$V_D = 12 V_{DC} , R_L = 33 \Omega, \label{eq:VDC}$	$T_j = 25$ °C	Q1÷Q3 Q1÷Q4	MAX MAX	1.3	V
V_{GD}	Gate Non Trigger Voltage	$V_D = V_{DRM} , R_L = 3.3 K\Omega,$	$T_j = 125$ °C	Q1÷Q3 Q1÷Q4	MIN MIN	0.2	V
I _H (2)	Holding Current	$I_T = 100 \text{ mA}$, Gate open,	T _j = 25 °C		MAX	15	mA
IL	Latching Current	$I_G = 1.2 \text{ IgT}, \ T_j = 25 ^{\circ}\text{C}$		Q1, Q3 Q1,Q3,Q4	MAX MAX	25	mA mA
				Q2	MAX	30	mA
dV/dt (2)	Critical Rate of Voltage Rise	$V_D = 0.67 \times V_{DRM}$, Gate of $T_j = 125^{\circ}C$	oen		MIN	40	V/µs
(dl/dt)c (2)	Critical Rate of Current Rise	(dv/dt)c= 0.1 V/μs	T _j = 125 °C		MIN	6.5	A/ms
		(dv/dt)c= 10 V/μs	$T_j = 125 {}^{\circ}\text{C}$		MIN	2.9	A/ms
		without snubber	$T_j = 125$ °C		MIN	-	
V _{TM} (2)	On-state Voltage	$I_T = 17 \text{ Amp, tp} = 380 \mu\text{s, } T$	_j = 25 °C		MAX	1.6	V
$V_{t(0)}$ (2)	Threshold Voltage	$T_{j} = 125 {}^{\circ}\text{C}$			MAX	0.80	V
r _d (2)	Dynamic Resistance	T _i = 125 °C			MAX	50	mΩ
I_{DRM}/I_{RRM}	Off-State Leakage Current	$V_D = V_{DRM}$, $V_R = V_{RRM}$,	$T_j = 125 ^{\circ}\text{C}$ $T_j = 25 ^{\circ}\text{C}$		MAX MAX	1 5	mΑ μ A
R _{th(j-c)}	Thermal Resistance Junction-Case	for AC 360° conduction at	ngle			1.3	°C/W
R _{th(j-a)}	Thermal Resistance Junction-Ambient	S = 1cm ²				60	°C/W

⁽¹⁾ Minimum I_{GT} is guaranted at 5% of I_{GT} max.

PART NUMBER INFORMATION

⁽²⁾ For either polarity of electrode MT2 voltage with reference to electrode MT1.

Fig. 1: Maximum power dissipation versus RMS on-state current (full cycle)

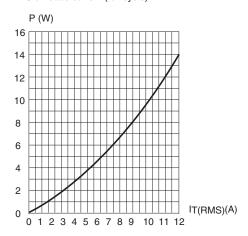


Fig. 3: : Relative variation of thermal impedance versus pulse duration

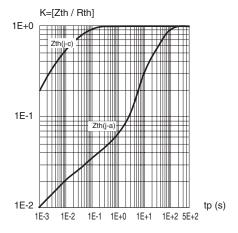


Fig. 5: Surge peak on-state current versus number of cycles

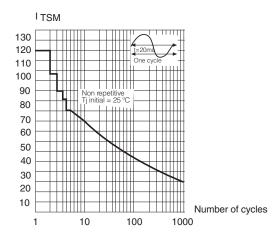


Fig. 2: RMS on-state current versus case temperature (full cycle)

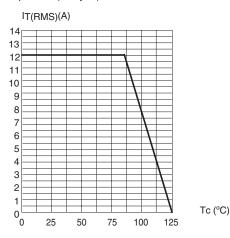


Fig. 4: On-state characteristics (maximum values)

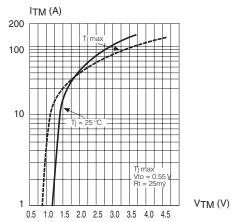


Fig. 6: Non repetitive surge peak on-state current for a sinusoidal pulse with width: tp < 10 ms, and corresponding value of I²t.

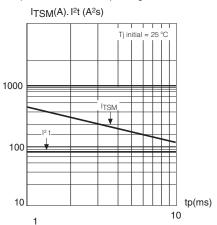


Fig. 7: Relative variation of gate trigger current, holding current and latching versus junction temperature (typical values)

Fig. 8: Relative variation of critical rate of decrease of main current versus junction temperature

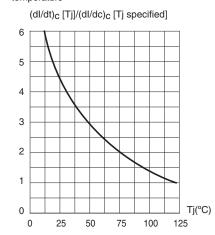
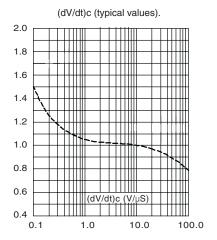
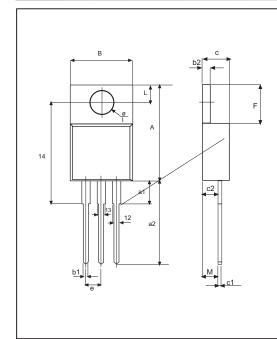




Fig. 9: Relative variation of critical rate of decrease of main current versus

PACKAGE MECHANICAL DATA

TO-220AB (Plastic)

	DIMENSIONS					
REF.	Milimeters					
	Min.	Nominal	Max.			
А	15.20		15.90			
a1		3.75				
a2	13.00		14.00			
В	10.00		10.40			
b1	0.61		0.88			
b2	1.23		1.32			
С	4.40		4.60			
c1	0.49		0.70			
c2	2.40		2.72			
е	2.40		2.70			
F	6.20		6.60			
1	3.75		3.85			
14	15.80	16.40	16.80			
L	2.65		2.95			
12	1.14		1.70			
13	1.14		1.70			
M		2.60				