$semiconductors:: product:: Sensitive \ Gate \ SCRs$

Product: Sensitive Gate SCRs

Sensitive Gate SCRs are easy to drive thanks to their very low gate current triggering.

This high gate sensitivity allows direct triggering from outputs of low power microcontrollers or logic IC, simplifying drive circuit design and reducing component and assembly cost.

They are suitable for low power applications where low consumption is mandatory.

5	- "		V _{RRM} /V _{DRM}	I _{TSM}	I _{GT min}	IGT min	I _{GT max}	I _{GT max}	dv/dt _(min)	5404405
Product	Family	I _T (RMS)	(V)	(A)	(µA)	(mA)	(μA)	(mA)	V/µs	PACKAGE
FS0402MI	FS04I(SeG)	4	600	30	_		200		5	IPAK

SENSITIVE GATE SCR

IPAK (Plastic)

G OKK

On-State Current Gate Trigger Current 4 Amp $< 200 \text{ } \mu\text{A}$

Off-State Voltage 200 V ÷ 800 V

These series of Silicon Controlled Rectifier use a high performance PNPN technology.

These parts are intended for general purpose applications where high gate sensitivity is required.

Absolute Maximum Ratings, according to IEC publication No. 134

SYMBOL	PARAMETER	CONDITIONS	Value	Unit
I _{T(RMS)}	On-state Current	180° Conduction Angle, T _c = 110 °C	4	Α
I _{T(AV)}	Average On-state Current	Half Cycle, Θ = 180 °, T_C = 110 °C	2.5	Α
I _{TSM}	Non-repetitive On-State Current	Half Cycle, 60 Hz	33	Α
I _{TSM}	Non-repetitive On-State Current	Half Cycle, 50 Hz	30	Α
l²t	Fusing Current	t _p = 10ms, Half Cycle	4.5	A ² s
I _{GM}	Peak Gate Current	20 μs max.	1.2	Α
P _{GM}	Peak Gate Dissipation	20 μs max.	3	W
P _{G(AV)}	Gate Dissipation	20ms max.	0.2	W
T _j	Operating Temperature		(-40 to +125)	°C
T _{stg}	Storage Temperature		(-40 to +150)	°C
T _{sld}	Soldering Temperature	10s max.	260	°C
V_{RGM}	Reverse Gate Voltage		5	V

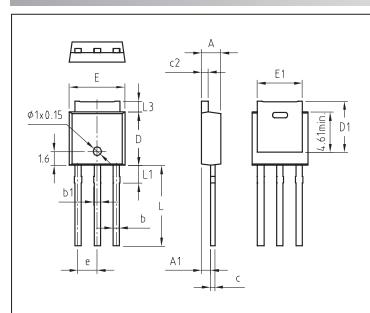
SYMBOL	PARAMETER	CONDITIONS		VOLTAGE				Unit
			В	D	М	S	N	
V_{DRM} V_{RRM}	Repetitive Peak Off State Voltage	R_{GK} = 1 k Ω	200	400	600	700	800	V

SENSITIVE GATE SCR

Electrical Characteristics

SYMBOL	PARAMETER	CONDITIONS			SENSITIVITY				Uni
					01	02	03	04	
I _{GT}	Gate Trigger Current	$V_D = 12 V_{DC}$, $R_L = 140 \Omega$. T_j	= 25 °C	MIN	1		20	15	μΑ
				MAX	20	200	200	50	
V_{GT}	Gate Trigger Voltage	$V_D = 12 V_{DC}$, $R_L = 140 \Omega$, $T_j =$	MAX	0.8			V		
V_{GD}	Gate Non Trigger Voltage	$V_D = V_{DRM}$, $R_L = 3.3k\Omega$, $R_{GK} = T_j = 125$ °C	MIN	0.1			V		
V_{RGM}	Reverse Gate Voltage	$I_{RG} = 10\mu A$,	MIN	8			V		
I _H	Holding Current	$I_T = 50 \text{ mA}, R_{GK} = 1 \text{k}\Omega$ $T_j = 25 ^{\circ}\text{C}$			5			mA	
I _L	Latching Current	$I_G=1$ mA, $R_{GK}=1$ k Ω	MAX	6			mA		
dV / dt	Critical Rate of Voltage Rise	$\begin{aligned} &V_{\text{D}} = 0.67 \text{ x } V_{\text{DRM}} \text{ , } R_{\text{GK}} = &1 \text{ k} \Omega \\ &T_{\text{j}} = 125 \text{ °C} \end{aligned}$	2,	MIN	10	5	10	10	V/µs
dl / dt		$I_G = 2 \times I_{GT}$ $tr \le 100 \text{ ns, } f = 60$ $T_j = 125 \text{ °C}$	MIN	50			A/µs		
V_{TM}	On-state Voltage	at $I_T = 8$ Amp, $tp = 380 \mu s$, $T_j = 380 \mu s$	MAX	1.6			V		
V_{t0}	Threshold Voltage	T _j = 125 °C	MAX	0.85			V		
r _d	Dynamic resistance	T _j = 125 °C	MAX	90			m Ω		
I _{DRM} / I _{RRM}		$V_D = V_{DRM}, R_{GK} = 1k\Omega \mid T_i = 1$	125 °C	MAX		-	1		mA
		$V_R = V_{RRM}$, $T_j =$	25 °C	MAX		!	5		mA
R _{th(j-c)}	Thermal Resistance Junction-Case for DC	for AC 360 ° conduction angle			1.6			°C/W	
$R_{th(j-a)}$	Thermal Resistance Junction-Amb for DC	S = 1cm ²			100			°C/W	

PART NUMBER INFORMATION



SENSITIVE GATE SCR

PACKAGE MECHANICAL DATA

IPAK TO 251-AA

	DIMENSIONS							
REF.	Milimeters							
	Min.	Nominal	Max.					
Α	2.19	2.30 ± 0.11	2.41					
A1	0.89	1.08 ± 0.19	1.27					
b	0.50	0.70 ± 0.20	0.90					
b1	0.70	0.92 ± 0.22	1.14					
С	0.43	0.51 ± 0.08	0.59					
c2	0.43	0.62 ± 0.19	0.81					
D	5.40	5.81 ± 0.41	6.22					
D1	5.70	5.90 ± 0.20	6.10					
E	6.35	6.54 ± 0.19	6.73					
E1	5.20	5.33 ± 0.13	5.46					
е	2.25	2.30 ± 0.05	2.35					
L	7.50	8.58 ± 1.08	9.66					
L1	1.90	2.10 ± 0.20	2.28					
L3	0.89	1.27 ± 0.38	1.65					

Marking: type number Weight: 0.2 g