
semiconductors :: product :: Ultrafast Recovery Rectifiers

Product: Ultrafast Recovery Rectifiers

FAGOR ELECTRONICA's Ultrafast Recovery Rectifiers offer reverse recovery times down to 30ns using broad range of forward current possibilities and packages.

Ideal for high frequency applications like SMPS, Monitors, Electronic Ballast, Inverters....

Manufactured using HYPERECTIFIER© technology, we offer these devices housed either in leaded packages or SMD.

Product	Family	$\mathrm{I}_{\mathrm{F}(\mathrm{AV})}(\mathrm{A})$	$\mathrm{I}_{\mathrm{FSM}}(\mathrm{A})$	$\mathrm{V}_{\mathrm{RRM}}(\mathrm{V})$	$\mathrm{V}_{\mathrm{F}}(\mathrm{V})$	$\mathrm{T}_{\mathrm{RR}}(\mathrm{ns})$	OUTLINE
EGP50B	EGP50	5.0	150	100	1.0	50	DO201-AD

5 Amp. Glass Passivated Avalanche Ultrafast Recovery Rectifier

	Voltage 50 to 400 V. Current 5 A at $55^{\circ} \mathrm{C}$.
Mounting instructions	- Glass Passivated Junction
1. Min. distance from body to soldering point, 4 mm .	- High current capability
2. Max. solder temperature, $350^{\circ} \mathrm{C}$.	- The plastic material carries U/L recognition 94 V-0
3. Max. soldering time, 3.5 sec.	- Terminals: Axial Leads
4. Do not bend lead at a point closer than 3 mm . to the body.	- Polarity: Color band denotes cathode

Maximum Ratings, according to IEC publication No. 134

		EGP50A	EGP50B	EGP50D	EGP50F	EGP50G
$\mathrm{V}_{\text {RRM }}$	Peak Recurrent reverse voltage (V)	50	100	200	300	400
$\mathrm{V}_{\text {PMS }}$	Maximum RMS voltage	35	70	140	210	280
$V_{D C}$	Maximum DC blocking voltage	50	100	200	300	400
$\mathrm{I}_{\mathrm{F}(A)}$	Forward current at Tamb $=55^{\circ} \mathrm{C}$	5 A				
$\mathrm{I}_{\text {FRM }}$	Recurrent peak forward current (A)	50 A				
$\mathrm{I}_{\text {FSM }}$	8.3 ms . peak forward surge current Jedec Method)	150 A				
t_{rr}	Max. reverse recovery time from $\mathrm{I}_{\mathrm{F}}=0.5 \mathrm{~A} ; \mathrm{I}_{\mathrm{R}}=1 \mathrm{~A} ; \mathrm{I}_{\mathrm{RR}}=0.25 \mathrm{~A}$	50 ns				
C_{j}	Typical Junction Capacitance at 1 MHz and reverse voltaje of $4 V_{D C}$	100 pF				
T_{j}	Operating temperature range	-65 to $+150^{\circ} \mathrm{C}$				
$\mathrm{T}_{\text {stg }}$	Storage temperature range	-65 to $+150^{\circ} \mathrm{C}$				
$E_{\text {RSM }}$	Maximum non repetitive peak reverse avalanche energy. $\mathrm{I}_{\mathrm{R}}=1 \mathrm{~A} ; \mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$	20 mJ				

Electrical Characteristics at Tamb $=25^{\circ} \mathrm{C}$

V_{F}	Max. forward voltage drop at $\mathrm{I}_{\mathrm{F}}=5 \mathrm{~A}$	1.0V	1.25V
I_{R}	Max. reverse current at $V_{\text {RRM }} \begin{array}{r}\text { at } 25^{\circ} \mathrm{C} \\ \text { at } 150{ }^{\circ} \mathrm{C}\end{array}$	$\begin{gathered} 5 \mu A \\ 50 \mu A \end{gathered}$	
$\mathrm{R}_{\mathrm{tbj-a}}$	Max. thermal resistance ($\mathrm{l}=10 \mathrm{~mm}$.)	$20^{\circ} \mathrm{C} / \mathrm{W}$	

