

TISP6NTP2x - Quad Programmable Thyristor Surge Protector

Device Number	TISP6NTP2A	TISP6NTP2C
Package Options	DR	DR
Protection Voltage (V)	0 to -90	0 to -170
Ratings for Lightning Surge Standards - GR- 1089-CORE 2/10 us (A)	85	90
Ratings for Lightning Surge Standards - GR- 1089-CORE 2/10 us (A)	60	-
Ratings for Lightning Surge Standards - ANSI C62.41 8/20 us (A)	60	-
Ratings for Lightning Surge Standards - ITU-T K.20/45/21 5/310 us (A)	25	40
Ratings for Lightning Surge Standards - GR- 1089-CORE 10/1000 us (A)	20	25

QUAD FORWARD-CONDUCTING BUFFERED P-GATE THYRISTORS

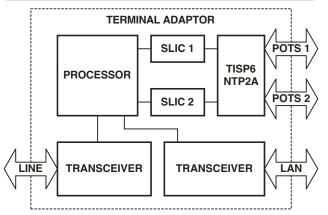
TISP6NTP2A Programmable Protector

Independent Overvoltage Protection for Two SLICs in Short Loop Applications:

- Wide 0 to -90 V Programming Range
- Low 5 mA max. Gate Triggering Current
- High 150 mA min. (85 °C) Holding Current
- Specified 1.2/50 & 0.5/700 Limiting Voltage
- Full -40 °C to 85 °C Temperature Range

Rated for Common Impulse Waveforms

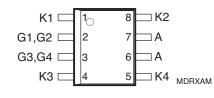
Voltage Impulse Form	Current Impulse Shape	I _{TSP} A
10/1000 μs	10/1000 μs	20
10/700 μs	5/310 μs	25
1.2/50 μs	8/20 μs	75
2/10 μs	2/10 μs	85

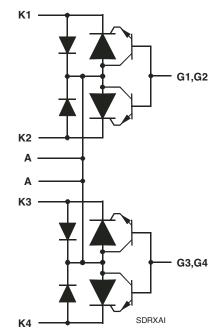

W UL Recognized Component

Description

The TISP6NTP2A has been designed for short loop systems such as:

- WILL (Wireless In the Local Loop)
- FITL (Fibre In The Loop)
- DAML (Digital Added Main Line, Pair Gain)
- SOHO (Small Office Home Office)
- ISDN-TA (Integrated Services Digital Network -Terminal Adaptors)


Typical TISP6NTP2A Router Application


How To Order

Device Package		Carrier	Order As
TISP6NTP2A	D, Small-Outline	Tape and Reel	TISP6NTP2ADR-S

D Package (Top View)

Device Symbol

TISP6NTP2A Programmable Protector

BOURNS®

Description (continued)

These systems often have the need to source two POTS (Plain Old Telephone Service) lines, one for a telephone and the other for a facsimile machine. In a single surface mount package, the TISP6NTP2A protects the two POTS line SLICs (Subscriber Line Interface Circuits) against overvoltages caused by lightning, a.c. power contact and induction.

The TISP6NTP2A has an array of four buffered P-gate forward conducting thyristors with twin commoned gates and a common anode connection. Each thyristor cathode has a separate terminal connection. An antiparallel anode-cathode diode is connected across each thyristor. The buffer transistors reduce the gate supply current.

In use, the cathodes of an TISP6NTP2A thyristor are connected to the four conductors of two POTS lines (see applications information). Each gate is connected to the appropriate negative voltage battery feed of the SLIC driving that line pair. By having separate gates, each SLIC can be protected at a voltage level related to the negative supply voltage of that individual SLIC. The anode of the TISP6NTP2A is connected to the SLIC common.

Positive overvoltages are clipped to common by forward conduction of the TISP6NTP2A antiparallel diode. Negative overvoltages are initially clipped close to the SLIC negative supply by emitter follower action of the TISP6NTP2A buffer transistor. If sufficient clipping current flows, the TISP6NTP2A thyristor will regenerate and switch into a low voltage on-state condition. As the overvoltage subsides, the high holding current of the TISP6NTP2A prevents d.c. latchup.

Rating	Symbol	Value	Unit
Repetitive peak off-state voltage, $I_G = 0,-40 \text{ °C} \le T_J \le 85 \text{ °C}$	V _{DRM}	-100	V
Repetitive peak gate-cathode voltage, $V_{KA} = 0,-40 \text{ °C} \le T_J \le 85 \text{ °C}$	V _{GKRM}	-90	V
Non-repetitive peak on-state pulse current, -40 $^{\circ}C \le T_{J} \le 85 ^{\circ}C$, (see Notes 1 and 2)			
10/1000 μs (Bellcore GR-1089-CORE, Issue 1, November 1994, Section 4)		20	A
0.2/310 μs (l3124, open-circuit voltage wave shape 0.5/700 μs)		25	
5/310 μs (ITU-T K.20 & K.21, open-circuit voltage wave shape 10/700 μs)	ITSP	25	
8/20 μs (IEC 61000-4-5:1995, open-circuit voltage wave shape 1.2/50 μs)		75	
$2/10~\mu s$ (Bellcore GR-1089-CORE, Issue 1, November 1994, Section 4)		85	
Non-repetitive peak on-state current, 50/60 Hz, -40 $^{\circ}C \le T_{J} \le 85 ^{\circ}C$, (see Notes 1 and 2)			
100 ms		7	
1 s	I _{TSM}	2.7	А
5 s	.121/1	1.5	
300 s		0.45	
900 s		0.43	
Non-repetitive peak gate current, 1/2 μ s pulse, cathodes commoned (see Note 1)	I _{GSM}	25	А
Operating free-air temperature range	T _A	-40 to +85	°C
Junction temperature	ТJ	-40 to +150	°C
Storage temperature range	T _{stg}	-65 to +150	°C

NOTES: 1. Initially, the protector must be in thermal equilibrium with -40 °C ≤ T_J ≤ 85 °C. The surge may be repeated after the device returns to its initial conditions.

2. These non-repetitive rated currents are peak values for either polarity. The rated current values may be applied to any cathode-anode terminal pair. Additionally, all cathode-anode terminal pairs may have their rated current values applied simultaneously (in this case the anode terminal current will be four times the rated current value of an individual terminal pair). Above 85 °C, derate linearly to zero at 150 °C lead temperature.

Absolute Maximum Ratings, T_A = 25 °C (Unless Otherwise Noted)

TISP6NTP2A Programmable Protector

BOURNS®

Recommended Operating Conditions

		Min.	Тур.	Max.	Unit
C _G	Gate decoupling capacitor	100	220		nF
	Series resistor for GR-1089-CORE first-level surge survival	40			
R1, R2	Series resistor for ITU-T recommendation K.20	12			
	Series resistor for ITU-T recommendation K.21	20			Ω
	Series resistor for IEC 61000-4-5:1995, class 5, 1.2/50 or 10/700	4			

Electrical Characteristics for any Section, T_A = 25 $^{\circ}$ C (Unless Otherwise Noted)

Parameter Test Conditions		Min.	Тур.	Max.	Unit		
I _D	Off-state current	$V_{\rm D} = V_{\rm DRM}$, $I_{\rm G} = 0$	T _J = 25 °C			-5	μA
D	On-state current	$v_{\rm D} = v_{\rm DRM}, v_{\rm G} = 0$	T _J = 85 °C			-50	μΑ
		I _T = -20 A, IEC 61000-4-5:1995 combination imp	oulse generator,			-70	
V _(BO)	Breakover voltage	$V_{GG} = -50 V$					V
		I_T = -18 A, I3124 impulse generator, V_{GG} = -50 V				-70	
t _(BR)	Breakdown time	I_{T} = -18 A, I3124 impulse generator, $V_{(BR)}$ < -50 $^{\circ}$	V			2	μs
VF	Forward voltage	I_F = 0.6 A, t_w = 500 $\mu s,V_{GG}$ = -50 V				3	V
۷F	r orward voltage	I_F = 18 A, t_w = 500 µs, V_{GG} = -50 V				5	v
	Peak forward recovery	I_F = 20 A, IEC 61000-4-5:1995 combination imp	ulse generator,			15	
V _{FRM}	voltage	V _{GG} = -50 V					V
		I_F = 18 A, I3124 impulse generator, V_{GG} = -50 V				15	
t _{FR}	Forward recovery time	I _F = 18 A, I3124 impulse generator,	V _F > 10 V			2	μS
·rn		V _{GG} = -50 V	V _F > 5 V			4	pie
Ι _Η	Holding current	I_T = -1 A, di/dt = 1A/ms, V_{GG} = -50 V, T_J = 85 °C		-150			mA
I _{GKS}	Gate reverse current	$V_{GG} = V_{GKBM}, V_{AK} = 0$	T _J = 25 °C			-5	μA
GKS		VGG − VGKRM, VAK − V	T _J = 85 °C			-50	μΑ
lo r	Gate reverse current,	I _T = -0.6 A, t _w = 500 μs, V _{GG} = -50 V				-1	mA
IGAT	on state	$T_{\mu} = -0.0 \text{ A}, t_{W} = -500 \mu\text{s}, \text{ VGG} = -50 \text{ V}$				-1	IIIA
	Gate reverse current,						
IGAF	forward conducting	I_F = 0.6 A, t_w = 500 μ s, V_{GG} = -50 V		_w = 500 μs, V _{GG} = -50 V		-40	mA
	state						
I _{GT}	Gate trigger current	$I_T = -5 \text{ A}, t_{p(g)} \ge 20 \ \mu \text{s}, V_{GG} = -50 \text{ V}$				5	mA
V _{GT}	Gate trigger voltage	$I_T = -5 \text{ A}, t_{p(g)} \ge 20 \ \mu \text{s}, V_{GG} = -50 \text{ V}$				2.5	V
C	Anode-cathode off-	$f = 1 \text{ MHz}, V_{cl} = 1 \text{ V}, I_{Cl} = 0$, (see Note 3)	V _D = -3 V			100	pF
C _{AK}	state capacitance	r = r r r r r r r r r d = r r r r r G = 0, (see r r 0 r e s)	V _D = -50 V			60	pF

NOTE 3: These capacitance measurements employ a three terminal capacitance bridge incorporating a guard circuit. The unmeasured device terminals are a.c. connected to the guard terminal of the bridge.

Thermal Characteristics

ſ		Parameter	Test Conditions	Min.	Тур.	Max.	Unit
ſ	$R_{\theta J A}$	Junction to free air thermal resistance	$P_{tot} = 0.52 \text{ W}, T_A = 85 \text{ °C}, 5 \text{ cm}^2, \text{ FR4 PCB}$			160	°C/W