

TISP6xxxx - Dual Programmable Thyristor Surge Protector

Device Number	TISP61089H	TISP61089B	TISP61089BS	TISP61089A	TISP61089AS
Package Options	DM	DR	DR	DR	DR
Protection Voltage (V)	0 to -155	0 to -170	0 to -170	0 to -120	0 to -120
Ratings for Lightning Surge Standards - GR- 1089-CORE 2/10 us (A)	500	120	120	120	120
Ratings for Lightning Surge Standards - ANSI C62.41 8/20 us (A)	-	-	-	-	-
Ratings for Lightning Surge Standards - ITU-T K.20/45/21 5/310 us (A)	150	40	40	40	40
Ratings for Lightning Surge Standards - GR- 1089-CORE 10/1000 us (A)	100	30	30	30	30

Device Number	TISP61089	TISP61089S	TISP61521	TISP61511
Package Options	DR	DR	DR	<u>DR</u>
Protection Voltage (V)	0 to -85	0 to -85	0 to -175	0 to -85
Ratings for Lightning Surge Standards - GR- 1089-CORE 2/10 us (A)	120	120	170	170
Ratings for Lightning Surge Standards - ANSI C62.41 8/20 us (A)	-	-	100	90
Ratings for Lightning Surge Standards - ITU-T K.20/45/21 5/310 us (A)	40	40	40	40
Ratings for Lightning Surge Standards - GR- 1089-CORE 10/1000 us (A)	30	30	30	30

TISP61089D, TISP61089SD, TISP61089AD, TISP61089ASD

IPP = 100 A, 2/10

۷

8

DUAL FORWARD-CONDUCTING P-GATE THYRISTORS PROGRAMMABLE OVERVOLTAGE PROTECTORS

TISP61089 Gated Protector Series

Overvoltage Protection for Negative Rail SLICs

Dual Voltage-Tracking Protectors

- Low Gate Triggering Current < 5 mA - High Holding Current > 150 mA

Rated for GR-1089-CORE and K.44 Impulses

Impulse W	IPPSM	
Voltage	Current	Α
2/10	2/10	120
10/700	5/310	40
10/1000	10/1000	30

D Package Top View and Device Symbol for Feed-Thru Pin-Out

NC - No internal connection Terminal typical application names shown in parenthesis MD6XBDa

D Package Top View and Device Symbol for Shunt (SD) Pin-Out

SCR 12

2/10 Overshoot Voltage Specified

Element

Diode

Package Options - Surface Mount 8-pin Small-Outline Line Feed-Thru Connection (D) Shunt Version Connection (SD)

How To Order

Device	Package	Carrier	Order As	Device	Package	Carrier	Order As
TISP61089	D (Small-Outline)	R†	TISP61089DR-S	TISP61089A	D (Small-Outline)	R†	TISP61089ADR-S
TISP61089S	D (Small-Outline)	R†	TISP61089SDR-S	TISP61089AS	D (Small-Outline)	R†	TISP61089ASDR-S
† Carrier R is Embossed Tape Reeled				† Carrier R is Em	bossed Tape Reelec		

BOURNS®

TISP61089 Gated Protector Series

BOURNS®

Description

These '61089 parts are all dual forward-conducting buffered p-gate thyristor (SCR) overvoltage protectors. They are designed to protect monolithic SLICs (Subscriber Line Interface Circuits) against overvoltages on the telephone line caused by lightning, a.c. power contact and induction. The '61089 limits voltages that exceed the SLIC supply rail voltage. The '61089 parameters are specified to allow equipment compliance with Telcordia (formally Bellcore) GR-1089-CORE and ITU-T recommendations K.20, K.21 and K.45.

The SLIC line driver section is typically powered from 0 V (ground) and a negative (battery) voltage. The protector gate is connected to this negative supply. This references the protection (clipping) voltage to the negative supply voltage. The protection voltage will then track the negative supply voltage and the overvoltage stress on the SLIC is minimized.

Positive overvoltages are clipped to ground by diode forward conduction. Negative overvoltages are initially clipped close to the SLIC negative supply rail value. If sufficient current is available from the overvoltage, then the protector SCR will switch into a low voltage on-state condition. As the overvoltage subsides the high holding current of '61089 SCR avoids d.c. latchup.

The '61089 is intended to be used with a series resistance of at least 25 Ω and a suitable overcurrent function for Telcordia compliance. Power fault conditions require a series overcurrent element which either interrupts or reduces the circuit current before the '61089 current rating is exceeded. For equipment compliant to ITU-T recommendations K.20 or K.21 or K.45 only, the series resistor value is set by the coordination requirements. For coordination with a 400 V limit GDT, a minimum series resistor value of 10 Ω is recommended.

The '61089 buffered gate design reduces the loading on the SLIC supply during overvoltages caused by power cross and induction. The regular pin-out for surface mount and through-hole packages is a feed through configuration. Connection to the SLIC is made via the '61089, Ring through pins 4 - 5 and Tip through pins 1 - 8. A non-feed-through surface mount (D) package is available. This shunt (SD) version pin-out does not make duplicate connections to pin 5 and pin 8 which increases package creepage distance from ground of the other connections from about 0.7 mm to over 3 mm. High voltage ringing SLICs, with battery voltages below -100 V and down to -155 V, can be protected by the TISP61089B device. Details of this device are in the TISP61089B data sheet.

Absolute Maximum Ratings, -40 $^{\circ}C \le T_{,I} \le 85 ^{\circ}C$ (Unless Otherwise Noted)

Rating	Symbol	Value	Unit	
Repetitive peak off-state voltage, VGK = 0 61089	VDRM	-100	v	
		-120		
Benetitive peak gate-cathode voltage, Vue = 0.	Vorb	-85	v	
(61089A)	GKHIVI	-120	, v	
Non-repetitive peak on-state pulse current (see Notes 1 and 2)				
10/1000 μs (Telcordia (Bellcore) GR-1089-CORE, Issue 2, February 1999, Section 4)		30		
5/320 μs (ITU-T K.20, K.21& K.45, K.44 open-circuit voltage wave shape 10/700 μs)	IPPSM	40	Α	
1.2/50 μs (Telcordia (Bellcore) GR-1089-CORE, Issue 2, February 1999, Section 4)		100		
$2/10~\mu s$ (Telcordia (Bellcore) GR-1089-CORE, Issue 2, February 1999, Section 4)		120		
Non-repetitive peak on-state current, V_{GG} = -75 V, 50 Hz to 60 Hz (see Notes 1 and 2)				
0.1 s		11		
1 s	ITOM	4.8	А	
5 \$. 121/1	2.7		
300 s		0.95		
900 s		0.93		
Non-repetitive peak gate current, 1/2 μs pulse, cathodes commoned (see Notes 1 and 2)	IGSM	+40	А	
Operating free-air temperature range	T _A	-40 to +85	°C	
Junction temperature	TJ	-40 to +150	°C	
Storage temperature range	T _{stg}	-40 to +150	°C	

NOTES: 1. Initially the protector must be in thermal equilibrium with -40 °C ≤ T_J ≤ 85 °C. The surge may be repeated after the device returns to its initial conditions. Gate voltage ranges are -20 V to -75 V for the '61089 and -20 V to -100 V for the '61089A.

2. The rated current values may be applied either to the Ring to Ground or to the Tip to Ground terminal pairs. Additionally, both terminal pairs may have their rated current values applied simultaneously (in this case the Ground terminal current will be twice the rated current value of an individual terminal pair). Above 85 °C, derate linearly to zero at 150 °C lead temperature.

TISP61089 Gated Protector Series

BOURNS®

Recommended Operating Conditions

	Component	Min	Тур	Мах	Unit
C _G	Gate decoupling capacitor	100	220		nF
Rs	Series resistor for GR-1089-CORE first-level surge survival	25			Ω
	Series resistor for GR-1089-CORE first-level and second-level surge survival	40			Ω
ng	Series resistor for GR-1089-CORE intra-building port surge survival	8			Ω
	Series resistor for K.20, K.21 and K.45 coordination with a 400 V primary protector	10			Ω

Electrical Characteristics, $T_J = 25$ °C (Unless Otherwise Noted)

Parameter		Test Conditions	Min	Тур	Max	Unit		
1-	Off-state current	$T_J = 25 \text{ °C}$			-5	μΑ		
D	On-State Guirent	$v_D = v_{DRM}, v_{GR} = 0$ $T_J = 85 \ ^{\circ}C$			-50	μΑ		
		2/10 μs, I _{PP} = -56 A, R _S = 45 Ω, V _{GG} = -48 V, C _G = 220 nF		-57				
Vee	Breakover voltage	2/10 μs, I _{PP} = -100 A, R _S = 50 Ω, V _{GG} = -48 V, C _G = 220 nF		-60		v		
• (BO)	Dieakover voltage	1.2/50 μs, I _{PP} = -53 A, R _S = 47 Ω, V _{GG} = -48 V, C _G = 220 nF		-60		v		
		1.2/50 μs, I _{PP} = -96 A, R _S = 52 Ω, V _{GG} = -48 V, C _G = 220 nF		-64				
		2/10 μs, I _{PP} = -56 A, R _S = 45 Ω, V _{GG} = -48 V, C _G = 220 nF		9				
Variation	Gate-cathode impulse	2/10 μs, I _{PP} = -100 A, R _S = 50 Ω, V _{GG} = -48 V, C _G = 220 nF		12		V		
VGK(BO)	breakover voltage	1.2/50 μs, I _{PP} = -53 A, R _S = 47 Ω, V _{GG} = -48 V, C _G = 220 nF		12		v		
		1.2/50 μ s, I _{PP} = -96 A, R _S = 52 Ω , V _{GG} = -48 V, C _G = 220 nF		16				
V _F	Forward voltage	I _F = 5 A, t _w = 200 μs			3	V		
		2/10 μs, I _{PP} = 56 A, R _S = 45 Ω, V _{GG} = -48 V, C _G = 220 nF		6				
V	Peak forward recovery voltage	2/10 μs, I _{PP} = 100 A, R _S = 50 Ω, V _{GG} = -48 V, C _G = 220 nF		8		V		
✓FRM		1.2/50 μs, I _{PP} = 53 A, R _S = 47 Ω, V _{GG} = -48 V, C _G = 220 nF		8		v		
		1.2/50 μ s, I _{PP} = 96 A, R _S = 52 Ω , V _{GG} = -48 V, C _G = 220 nF		12				
Ι _Η	Holding current	I _T = -1 A, di/dt = 1A/ms, V _{GG} = -48 V	-150			mA		
1		$T_J = 25 ^{\circ}C$			-5	μA		
GKS	Gate reverse current	$v_{GG} = v_{GK} = v_{GKRM}, v_{KA} = 0$ $T_J = 85 \text{ °C}$			-50	μA		
I _{GT}	Gate trigger current	$I_T = -3 \text{ A}, t_{p(g)} \ge 20 \mu\text{s}, V_{GG} = -48 \text{ V}$			5	mA		
V _{GT}	Gate-cathode trigger voltage	$I_T = -3 \text{ A}, t_{p(g)} \ge 20 \mu\text{s}, V_{GG} = -48 \text{ V}$			2.5	V		
Q _{GS}	Gate switching charge	1.2/50 μs, I _{PP} = -53 A, R _S = 47 Ω, V _{GG} = -48 V, C _G = 220 nF		0.1		μC		
	Cathode-anode off-	V _D = -3 V			100	pF		
С _{КА}	state capacitance	$I = 1 \text{ MHz}, V_d = 1 \text{ V}, I_G = 0, \text{ (see Note 3)}$ $V_D = -48 \text{ V}$			50	pF		

NOTES: 3. These capacitance measurements employ a three terminal capacitance bridge incorporating a guard circuit. The unmeasured device terminals are a.c. connected to the guard terminal of the bridge.

Thermal Characteristics

Parameter		Test Conditions	5	Min	Тур	Мах	Unit
$R_{ heta JA}$	Junction to free air thermal resistance	$T_A = 25 \text{ °C}, EIA/JESD51-3$ PCB, EIA/JESD51-2 environment, P _{TOT} = 1.7 W	D Package			120	°C/W