

LMV771/LMV772/LMV774 Single/Dual/Quad, Low Offset, Low Noise, RRO **Operational Amplifiers**

General Description

The LMV771/LMV772/LMV774 are Single, Dual, and Quad low noise precision operational amplifiers intended for use in a wide range of applications. Other important characteristics of the family include: an extended operating temperature range of -40°C to 125°C, the tiny SC70-5 package for the LMV771, and low input bias current.

The extended temperature range of -40°C to 125°C allows the LMV771/LMV772/LMV774 to accommodate a broad range of applications. The LMV771 expands National Semiconductor's Silicon Dust™ amplifier portfolio offering enhancements in size, speed, and power savings. The LMV771/ LMV772/LMV774 are guaranteed to operate over the voltage range of 2.7V to 5.0V and all have rail-to-rail output.

The LMV771/LMV772/LMV774 family is designed for precision, low noise, low voltage, and miniature systems. These amplifiers provide rail-to-rail output swing into heavy loads. The maximum input offset voltage for the LMV771 is 850 µV at room temperature and the input common mode voltage range includes ground.

The LMV771 is offered in the tiny SC70-5 package, LMV772 in the space saving MSOP-8 and SOIC-8, and the LMV774 in TSSOP-14.

Features

(Unless otherwise noted, typical values at $V_S = 2.7V$)

- Guaranteed 2.7V and 5V specifications
- Maximum V_{OS} (LMV771)
- 850µV (limit) Voltage noise 12.5nV/√Hz — f = 100 Hz 7.5nV/√Hz - f = 10 kHzRail-to-Rail output swing 100mV from rail ___ R_L = 600Ω 50mV from rail $- R_1 = 2k\Omega$ 100dB Open loop gain with $R_1 = 2k\Omega$ V_{CM} 0 to V+ -0.9V 550µA
- Supply current (per amplifier)
- . Gain bandwidth product
- Temperature range

Applications

- Transducer amplifier
- Instrumentation amplifier -
- Precision current sensing
- Data acquisition systems
- . Active filters and buffers
- Sample and hold
- Portable/battery powered electronics

Instrumentation Amplifier

 $V_{0} = -K (2a + 1) (V_{1} - V_{2})$

Connection Diagram

Silicon Dust™ is a trademark of National Semiconductor Corporation

3.5MHz

-40°C to 125°C

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

ESD Tolerance (Note 2)	
Machine Model	200V
Human Body Model	2000V
Differential Input Voltage	± Supply Voltage
Voltage at Input Pins	(V+) + 0.3V, (V−) − 0.3V
Current at Input Pins	±10 mA
Supply Voltage (V+–V -)	5.75V
Output Short Circuit to V+	(Note 3)
Output Short Circuit to V-	(Note 4)
Mounting Temperture	

Infrared or Convection (20 sec)235°CWave Soldering Lead Temp260°C(10 sec)260°CStorage Temperature Range-65°C to 150°CJunction Temperature (Note 5)150°C

Operating Ratings (Note 1)

Supply Voltage	2.7V to 5.5V
Temperature Range	–40°C to 125°C
Thermal Resistance (θ _{JA})	
SC70-5 Package	440 °C/W
8-Pin MSOP	235°C/W
8-Pin SOIC	190°C/W
14-Pin TSSOP	155°C/W

2.7V DC Electrical Characteristics (Note 13)

Unless otherwise specified, all limits are guaranteed for T_A = 25°C. V⁺ = 2.7V, V ⁻ = 0V, V_{CM} = V⁺/2, V_O = V⁺/2 and

 $R_{I} > 1M\Omega$. **Boldface** limits apply at the temperature extremes.

Symbol	Parameter	Condition	Min (Note 7)	Typ (Note 6)	Max (Note 7)	Units
V _{OS}	Input Offset Voltage	LMV771		0.3	0.85 1.0	
		LMV772/LMV774		0.3	1.0 1.2	mv
TCV _{OS}	Input Offset Voltage Average Drift			-0.45		μV/°C
Ι _Β	Input Bias Current (Note 8)	V _{CM} = 1V		-0.1	100 250	pА
I _{os}	Input Offset Current (Note 8)			0.004	100	pА
I _S	Supply Current (Per Amplifier)			550	900 910	μA
CMRR	Common Mode Rejection Ratio	$0.5 \le V_{CM} \le 1.2V$	74 72	80		dB
PSSR	Power Supply Rejection Ratio	$2.7V \le V_{\pm} \le 5V$	82 76	90		dB
V _{CM}	Input Common-Mode Voltage Range	For CMRR ≥ 50dB	0		1.8	V
A _V	Large Signal Voltage Gain (Note 9)	$R_L = 600\Omega$ to 1.35V, V _O = 0.2V to 2.5V, (Note 10)	92 80	100		-10
			98 86	100		aв
Vo	Output Swing	$R_{L} = 600\Omega$ to 1.35V V _{IN} = ± 100mV, (Note 10)	0.11 0.14	0.084 to 2.62	2.59 2.56	V
			0.05 0.06	0.026 to 2.68	2.65 2.64	V
I _O	Output Short Circuit Current	Sourcing, $V_0 = 0V$ $V_{IN} = 100mV$	18 11	24		
		Sinking, $V_0 = 2.7V$ $V_{IN} = -100mV$	18 11	22		MA

2.7V AC Electrical Characteristics (Note 13)

Unless otherwise specified, all limits are guaranteed for $T_A = 25^{\circ}$ C. V⁺ = 5.0V, V⁻ = 0V, V_{CM} = V⁺/2, V_O = V⁺/2 and R_L > 1M Ω . **Boldface** limits apply at the temperature extremes.

Symbol	Parameter	Conditions	Min (Note 7)	Typ (Note 6)	Max (Note 7)	Units
SR	Slew Rate (Note 12)	$A_{V} = +1, R_{L} = 10 \text{ k}\Omega$		1.4		V/µs
GBW	Gain-Bandwidth Product			3.5		MHz
Φ _m	Phase Margin			79		Deg
G _m	Gain Margin			-15		dB
e _n	Input-Referred Voltage Noise (Flatband)	f = 10kHz		7.5		nV/√Hz
e _n	Input-Referred Voltage Noise (I/f)	f = 100Hz		12.5		nV/√Hz
i _n	Input-Referred Current Noise	f = 1kHz		0.001		pA/√Hz
THD	Total Harmonic Distortion	$f = 1 kHz, A_V = +1$		0.007		%
		$R_{L} = 600\Omega, V_{IN} = 1 V_{PP}$				

5.0V DC Electrical Characteristics (Note 13)

Unless otherwise specified, all limits are guaranteed for $T_A = 25^{\circ}$ C. V⁺ = 5.0V, V⁻ = 0V, V_{CM} = V⁺/2, V_O = V⁺/2 and R_L > 1M Ω . **Boldface** limits apply at the temperature extremes.

Symbol	Parameter	Condition	Min	Typ	Max	Units
<u></u>			(Note 7)	(INOTE 6)		
V _{OS}	Input Offset Voltage			0.25	0.85	
		I MV772/I MV774		0.25	1.0	mV
				0.20	1.2	
TCV _{OS}	Input Offset Voltage Average Drift			-0.35		μV/°C
I _B	Input Bias Current (Note 8)	V _{CM} = 1V		-0.23	100 250	pА
I _{OS}	Input Offset Current (Note 8)			0.017	100	pА
I _S	Supply Current (Per Amplifier)			600	950 960	μA
CMRR	Common Mode Rejection Ratio	$0.5 \le V_{CM} \le 3.5V$	80 79	90		dB
PSRR	Power Supply Rejection Ratio	$2.7V \le V^+ \le 5V$	82 76	90		dB
V _{CM}	Input Common-Mode Voltage Range	For CMRR ≥ 50dB	0		4.1	V
A _V	Large Signal Voltage Gain	$R_{L} = 600\Omega$ to 2.5V,	92	100		
	(Note 9)	V _O = 0.2V to 4.8V, (Note 10)	89			dP
		$R_L = 2k\Omega$ to 2.5V,	98	100		uБ
		V _O = 0.2V to 4.8V, (Note 11)	95			
Vo	Output Swing	$R_L = 600\Omega$ to 2.5V	0.15	0.112 to	4.85	
		$V_{IN} = \pm 100 mV$, (Note 10)	0.23	4.9	4.77	V
		$R_L = 2k\Omega$ to 2.5V	0.06	0.035 to	4.94	v
		V _{IN} = ± 100mV, (Note 11)	0.07	4.97	4.93	
I _O	Output Short Circuit Current (Note	Sourcing, V _O = 0V	35	75		
	8),(Note 14)	V _{IN} = 100mV	35			mA
		Sinking, V _O = 2.7V	35	66		
		$V_{IN} = -100 \text{mV}$	35			

5.0V AC Electrical Characteristics (Note 13)

Unless otherwise specified, all limits are guaranteed for $T_A = 25^{\circ}C$. V⁺ = 5.0V, V⁻ = 0V, V_{CM} = V⁺/2, V_O = V⁺/2 and R_L > 1M Ω . Boldface limits apply at the temperature extremes.

Symbol	Parameter	Conditions	Min	Тур	Max	Units
			(Note 7)	(Note 6)	(Note 7)	
SR	Slew Rate (Note 12)	$A_{V} = +1, R_{L} = 10 \text{ k}\Omega$		1.4		V/µs
GBW	Gain-Bandwidth Product			3.5		MHz
Φ _m	Phase Margin			79		Deg
G _m	Gain Margin			-15		dB
e _n	Input-Referred Voltage Noise (Flatband)	f = 10kHz		6.5		nV/√Hz
e _n	Input-Referred Voltage Noise (I/f)	f = 100Hz		12		nV/√Hz
i _n	Input-Referred Current Noise	f = 1kHz		0.001		pA/√Hz
THD	Total Harmonic Distortion	$f = 1kHz, A_V = +1$		0.007		%
		$R_{L} = 600\Omega, V_{IN} = 1 V_{PP}$				

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is intended to be functional, but specific performance is not guaranteed. For guaranteed specifications and the test conditions, see the Electrical Characteristics. **Note 2:** Human Body Model is $1.5 \text{ k}\Omega$ in series with 100 pF. Machine Model is 0Ω in series with 20 pF.

Note 3: Shorting output to V+ will adversely affect reliability.

Note 4: Shorting output to V- will adversely affect reliability.

Note 5: The maximum power dissipation is a function of $T_{J(MAX)}$, θ_{JA} , and T_A . The maximum allowable power dissipation at any ambient temperature is $P_D = (T_{J(MAX)} - T_A)/\theta_{JA}$. All numbers apply for packages soldered directly into a PC board.

Note 6: Typical values represent the most likely parametric norm.

Note 7: All limits are guaranteed by testing or statistical analysis.

Note 8: Limits guaranteed by design.

Note 9: R_1 is connected to mid-supply. The output voltage is set at 200mV from the rails. $V_{O} = GND + 0.2V$ and $V_{O} = V^{+} - 0.2V$

Note 10: For LMV772/LMV774, temperature limits apply to -40°C to 85°C.

Note 11: For LMV772/LMV774, temperature limits apply to -40° C to 85°C. If R_L is relaxed to 10 k Ω , then for LMV772/LMV774 temperature limits apply to -40° C to 125°C.

Note 12: The number specified is the slower of positive and negative slew rates.

Note 13: Electrical Table values apply only for factory testing conditions at the temperature indicated. Factory testing conditions result in very limited self-heating of the device such that $T_J = T_A$.

Note 14: Continuous operation of the device with an output short circuit current larger than 35mA may cause permanent damage to the device.

Ordering Information

Package	Part Number	Package Marking	Transport Media	NSC Drawing	
	LMV771MG	A75	1k Units Tape and Reel	MAA05A	
3070-5	LMV771MGX	A75	3k Units Tape and Reel		
8-Pin SOIC	LMV772MA		95 Units/Rail	MOSA	
	LMV772MAX		2.5k Units Tape and Reel	IVIU8A	
8-Pin MSOP	LMV772MM	4014	1k Units Tape and Reel	MUA08A	
	LMV772MMX	ASTA	3.5k Units Tape and Reel		
14-Pin TSSOP	LMV774MT	94 Units/Rail		MTO14	
	LMV774MTX		2.5k Units Tape and Reel	MITC14	

Physical Dimensions inches (millimeters) unless otherwise noted

